Properties

Label 4-48e4-1.1-c3e2-0-32
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $18479.7$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·5-s + 40·13-s − 16·17-s − 142·25-s − 92·29-s − 328·37-s − 624·41-s − 238·49-s + 532·53-s − 264·61-s + 480·65-s + 492·73-s − 192·85-s − 2.78e3·89-s − 604·97-s + 2.93e3·101-s − 3.12e3·109-s + 3.10e3·113-s − 870·121-s − 3.63e3·125-s + 127-s + 131-s + 137-s + 139-s − 1.10e3·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.07·5-s + 0.853·13-s − 0.228·17-s − 1.13·25-s − 0.589·29-s − 1.45·37-s − 2.37·41-s − 0.693·49-s + 1.37·53-s − 0.554·61-s + 0.915·65-s + 0.788·73-s − 0.245·85-s − 3.31·89-s − 0.632·97-s + 2.88·101-s − 2.74·109-s + 2.58·113-s − 0.653·121-s − 2.60·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.632·145-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(18479.7\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5308416,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 6 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 34 p T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 870 T^{2} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 20 T + p^{3} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 8 T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 + 6550 T^{2} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 4338 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 46 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 59134 T^{2} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 164 T + p^{3} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 312 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 20186 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 178974 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 266 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 346246 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 132 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 343478 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 257070 T^{2} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 246 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 931870 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 195606 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1392 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 302 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454335724385641876241301406715, −8.352853269697175036416224998437, −7.53322603716415626658945077888, −7.40548272531159595479192813363, −6.77919196205150001304123947919, −6.52183601045389796271688640757, −6.09546471330166877581861176464, −5.74306013495796717667003802687, −5.26164519607894616552902495729, −5.13467139041374179437178461999, −4.41536196509713758215398726909, −3.93630733941639700700117854415, −3.49327041316085531818569445788, −3.20871725173744602139833458062, −2.27203965202186773816555075488, −2.17941267894278403263094625231, −1.42295836020293354402691344283, −1.27183521030992646316492767112, 0, 0, 1.27183521030992646316492767112, 1.42295836020293354402691344283, 2.17941267894278403263094625231, 2.27203965202186773816555075488, 3.20871725173744602139833458062, 3.49327041316085531818569445788, 3.93630733941639700700117854415, 4.41536196509713758215398726909, 5.13467139041374179437178461999, 5.26164519607894616552902495729, 5.74306013495796717667003802687, 6.09546471330166877581861176464, 6.52183601045389796271688640757, 6.77919196205150001304123947919, 7.40548272531159595479192813363, 7.53322603716415626658945077888, 8.352853269697175036416224998437, 8.454335724385641876241301406715

Graph of the $Z$-function along the critical line