L(s) = 1 | + 12·5-s + 40·13-s − 16·17-s − 142·25-s − 92·29-s − 328·37-s − 624·41-s − 238·49-s + 532·53-s − 264·61-s + 480·65-s + 492·73-s − 192·85-s − 2.78e3·89-s − 604·97-s + 2.93e3·101-s − 3.12e3·109-s + 3.10e3·113-s − 870·121-s − 3.63e3·125-s + 127-s + 131-s + 137-s + 139-s − 1.10e3·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 1.07·5-s + 0.853·13-s − 0.228·17-s − 1.13·25-s − 0.589·29-s − 1.45·37-s − 2.37·41-s − 0.693·49-s + 1.37·53-s − 0.554·61-s + 0.915·65-s + 0.788·73-s − 0.245·85-s − 3.31·89-s − 0.632·97-s + 2.88·101-s − 2.74·109-s + 2.58·113-s − 0.653·121-s − 2.60·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.632·145-s + 0.000549·149-s + 0.000538·151-s + ⋯ |
Λ(s)=(=(5308416s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(5308416s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5308416
= 216⋅34
|
Sign: |
1
|
Analytic conductor: |
18479.7 |
Root analytic conductor: |
11.6593 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 5308416, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C2 | (1−6T+p3T2)2 |
| 7 | C22 | 1+34pT2+p6T4 |
| 11 | C22 | 1+870T2+p6T4 |
| 13 | C2 | (1−20T+p3T2)2 |
| 17 | C2 | (1+8T+p3T2)2 |
| 19 | C22 | 1+6550T2+p6T4 |
| 23 | C22 | 1−4338T2+p6T4 |
| 29 | C2 | (1+46T+p3T2)2 |
| 31 | C22 | 1+59134T2+p6T4 |
| 37 | C2 | (1+164T+p3T2)2 |
| 41 | C2 | (1+312T+p3T2)2 |
| 43 | C22 | 1−20186T2+p6T4 |
| 47 | C22 | 1+178974T2+p6T4 |
| 53 | C2 | (1−266T+p3T2)2 |
| 59 | C22 | 1+346246T2+p6T4 |
| 61 | C2 | (1+132T+p3T2)2 |
| 67 | C22 | 1+343478T2+p6T4 |
| 71 | C22 | 1+257070T2+p6T4 |
| 73 | C2 | (1−246T+p3T2)2 |
| 79 | C22 | 1+931870T2+p6T4 |
| 83 | C22 | 1+195606T2+p6T4 |
| 89 | C2 | (1+1392T+p3T2)2 |
| 97 | C2 | (1+302T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.454335724385641876241301406715, −8.352853269697175036416224998437, −7.53322603716415626658945077888, −7.40548272531159595479192813363, −6.77919196205150001304123947919, −6.52183601045389796271688640757, −6.09546471330166877581861176464, −5.74306013495796717667003802687, −5.26164519607894616552902495729, −5.13467139041374179437178461999, −4.41536196509713758215398726909, −3.93630733941639700700117854415, −3.49327041316085531818569445788, −3.20871725173744602139833458062, −2.27203965202186773816555075488, −2.17941267894278403263094625231, −1.42295836020293354402691344283, −1.27183521030992646316492767112, 0, 0,
1.27183521030992646316492767112, 1.42295836020293354402691344283, 2.17941267894278403263094625231, 2.27203965202186773816555075488, 3.20871725173744602139833458062, 3.49327041316085531818569445788, 3.93630733941639700700117854415, 4.41536196509713758215398726909, 5.13467139041374179437178461999, 5.26164519607894616552902495729, 5.74306013495796717667003802687, 6.09546471330166877581861176464, 6.52183601045389796271688640757, 6.77919196205150001304123947919, 7.40548272531159595479192813363, 7.53322603716415626658945077888, 8.352853269697175036416224998437, 8.454335724385641876241301406715