Properties

Label 4-48e4-1.1-c3e2-0-13
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $18479.7$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·5-s − 40·13-s + 16·17-s − 142·25-s − 92·29-s + 328·37-s + 624·41-s − 238·49-s + 532·53-s + 264·61-s − 480·65-s + 492·73-s + 192·85-s + 2.78e3·89-s − 604·97-s + 2.93e3·101-s + 3.12e3·109-s − 3.10e3·113-s − 870·121-s − 3.63e3·125-s + 127-s + 131-s + 137-s + 139-s − 1.10e3·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.07·5-s − 0.853·13-s + 0.228·17-s − 1.13·25-s − 0.589·29-s + 1.45·37-s + 2.37·41-s − 0.693·49-s + 1.37·53-s + 0.554·61-s − 0.915·65-s + 0.788·73-s + 0.245·85-s + 3.31·89-s − 0.632·97-s + 2.88·101-s + 2.74·109-s − 2.58·113-s − 0.653·121-s − 2.60·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.632·145-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(18479.7\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5308416,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.051788571\)
\(L(\frac12)\) \(\approx\) \(5.051788571\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 6 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 34 p T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 870 T^{2} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 20 T + p^{3} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 + 6550 T^{2} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 4338 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 46 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 59134 T^{2} + p^{6} T^{4} \)
37$C_2$ \( ( 1 - 164 T + p^{3} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 312 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 20186 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 178974 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 266 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 346246 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 - 132 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 343478 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 257070 T^{2} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 246 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 931870 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 195606 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1392 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 302 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.068320718430586707576346592331, −8.510203494958569075473569957636, −7.82914768500903149922454862135, −7.76071441139252348984212924569, −7.46117180224875122397741590603, −6.89088889203380375911102492517, −6.39493412954873162441148636136, −6.08390815882679726651876947523, −5.69092748653825105772375589094, −5.50236092771098475603889010913, −4.80189099312086770366939471157, −4.60339266337629697763503323342, −3.86413657686958596916412871263, −3.72186251088187267584349983865, −2.84899815356566449971456843329, −2.55299902155961116719969862621, −1.94524802376396156095771121162, −1.82057798586685079973966681706, −0.70976619479302057083419087927, −0.62323311141488764755729211682, 0.62323311141488764755729211682, 0.70976619479302057083419087927, 1.82057798586685079973966681706, 1.94524802376396156095771121162, 2.55299902155961116719969862621, 2.84899815356566449971456843329, 3.72186251088187267584349983865, 3.86413657686958596916412871263, 4.60339266337629697763503323342, 4.80189099312086770366939471157, 5.50236092771098475603889010913, 5.69092748653825105772375589094, 6.08390815882679726651876947523, 6.39493412954873162441148636136, 6.89088889203380375911102492517, 7.46117180224875122397741590603, 7.76071441139252348984212924569, 7.82914768500903149922454862135, 8.510203494958569075473569957636, 9.068320718430586707576346592331

Graph of the $Z$-function along the critical line