Properties

Label 4-48e4-1.1-c3e2-0-1
Degree 44
Conductor 53084165308416
Sign 11
Analytic cond. 18479.718479.7
Root an. cond. 11.659311.6593
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·5-s − 40·13-s − 16·17-s − 142·25-s + 92·29-s + 328·37-s − 624·41-s − 238·49-s − 532·53-s + 264·61-s + 480·65-s + 492·73-s + 192·85-s − 2.78e3·89-s − 604·97-s − 2.93e3·101-s + 3.12e3·109-s + 3.10e3·113-s − 870·121-s + 3.63e3·125-s + 127-s + 131-s + 137-s + 139-s − 1.10e3·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.07·5-s − 0.853·13-s − 0.228·17-s − 1.13·25-s + 0.589·29-s + 1.45·37-s − 2.37·41-s − 0.693·49-s − 1.37·53-s + 0.554·61-s + 0.915·65-s + 0.788·73-s + 0.245·85-s − 3.31·89-s − 0.632·97-s − 2.88·101-s + 2.74·109-s + 2.58·113-s − 0.653·121-s + 2.60·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.632·145-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

Λ(s)=(5308416s/2ΓC(s)2L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(5308416s/2ΓC(s+3/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 53084165308416    =    216342^{16} \cdot 3^{4}
Sign: 11
Analytic conductor: 18479.718479.7
Root analytic conductor: 11.659311.6593
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 5308416, ( :3/2,3/2), 1)(4,\ 5308416,\ (\ :3/2, 3/2),\ 1)

Particular Values

L(2)L(2) \approx 0.18710328040.1871032804
L(12)L(\frac12) \approx 0.18710328040.1871032804
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
good5C2C_2 (1+6T+p3T2)2 ( 1 + 6 T + p^{3} T^{2} )^{2}
7C22C_2^2 1+34pT2+p6T4 1 + 34 p T^{2} + p^{6} T^{4}
11C22C_2^2 1+870T2+p6T4 1 + 870 T^{2} + p^{6} T^{4}
13C2C_2 (1+20T+p3T2)2 ( 1 + 20 T + p^{3} T^{2} )^{2}
17C2C_2 (1+8T+p3T2)2 ( 1 + 8 T + p^{3} T^{2} )^{2}
19C22C_2^2 1+6550T2+p6T4 1 + 6550 T^{2} + p^{6} T^{4}
23C22C_2^2 14338T2+p6T4 1 - 4338 T^{2} + p^{6} T^{4}
29C2C_2 (146T+p3T2)2 ( 1 - 46 T + p^{3} T^{2} )^{2}
31C22C_2^2 1+59134T2+p6T4 1 + 59134 T^{2} + p^{6} T^{4}
37C2C_2 (1164T+p3T2)2 ( 1 - 164 T + p^{3} T^{2} )^{2}
41C2C_2 (1+312T+p3T2)2 ( 1 + 312 T + p^{3} T^{2} )^{2}
43C22C_2^2 120186T2+p6T4 1 - 20186 T^{2} + p^{6} T^{4}
47C22C_2^2 1+178974T2+p6T4 1 + 178974 T^{2} + p^{6} T^{4}
53C2C_2 (1+266T+p3T2)2 ( 1 + 266 T + p^{3} T^{2} )^{2}
59C22C_2^2 1+346246T2+p6T4 1 + 346246 T^{2} + p^{6} T^{4}
61C2C_2 (1132T+p3T2)2 ( 1 - 132 T + p^{3} T^{2} )^{2}
67C22C_2^2 1+343478T2+p6T4 1 + 343478 T^{2} + p^{6} T^{4}
71C22C_2^2 1+257070T2+p6T4 1 + 257070 T^{2} + p^{6} T^{4}
73C2C_2 (1246T+p3T2)2 ( 1 - 246 T + p^{3} T^{2} )^{2}
79C22C_2^2 1+931870T2+p6T4 1 + 931870 T^{2} + p^{6} T^{4}
83C22C_2^2 1+195606T2+p6T4 1 + 195606 T^{2} + p^{6} T^{4}
89C2C_2 (1+1392T+p3T2)2 ( 1 + 1392 T + p^{3} T^{2} )^{2}
97C2C_2 (1+302T+p3T2)2 ( 1 + 302 T + p^{3} T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.674928589465623250389111698643, −8.368306148613313031431556298209, −8.074641098795012974045236367918, −7.77884339656101187089399900210, −7.29660493386083887982561372464, −7.06506671910476541982437116512, −6.40149049520788482817000551804, −6.37866287016735266993870994060, −5.57463690623759405273983903736, −5.34760665527239682916050832435, −4.64667176483337306434323193170, −4.57937812640227584449594731361, −3.88336965730274095748971935383, −3.73470580477882442327633158365, −2.87690499386731537393282823031, −2.86741936916663348175166069266, −1.94518721903970911902948190406, −1.63370186619493882920138533737, −0.795229420565376285503701111966, −0.10829014482775284369731266992, 0.10829014482775284369731266992, 0.795229420565376285503701111966, 1.63370186619493882920138533737, 1.94518721903970911902948190406, 2.86741936916663348175166069266, 2.87690499386731537393282823031, 3.73470580477882442327633158365, 3.88336965730274095748971935383, 4.57937812640227584449594731361, 4.64667176483337306434323193170, 5.34760665527239682916050832435, 5.57463690623759405273983903736, 6.37866287016735266993870994060, 6.40149049520788482817000551804, 7.06506671910476541982437116512, 7.29660493386083887982561372464, 7.77884339656101187089399900210, 8.074641098795012974045236367918, 8.368306148613313031431556298209, 8.674928589465623250389111698643

Graph of the ZZ-function along the critical line