L(s) = 1 | − 12·17-s + 8·19-s + 2·25-s − 12·41-s + 8·43-s − 2·49-s + 24·59-s − 8·67-s − 4·73-s + 12·89-s − 4·97-s + 24·107-s + 12·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2.91·17-s + 1.83·19-s + 2/5·25-s − 1.87·41-s + 1.21·43-s − 2/7·49-s + 3.12·59-s − 0.977·67-s − 0.468·73-s + 1.27·89-s − 0.406·97-s + 2.32·107-s + 1.12·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(5308416s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5308416s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5308416
= 216⋅34
|
Sign: |
1
|
Analytic conductor: |
338.469 |
Root analytic conductor: |
4.28923 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 5308416, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.718560367 |
L(21) |
≈ |
1.718560367 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | C22 | 1+50T2+p2T4 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1+46T2+p2T4 |
| 53 | C22 | 1+94T2+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C22 | 1+74T2+p2T4 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C22 | 1+94T2+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+50T2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.051958995200110935297158929877, −8.872238150144058509099300033791, −8.393135543397082230969700621486, −8.297128464064606045304138325176, −7.40784544888046377444052101226, −7.33661936490695083674831742076, −6.87296624703370658242518001585, −6.63533842994695874337372444054, −6.00748604342774431415303044952, −5.78738706852668711508938914379, −5.05640537320441894785617631505, −4.89148071841182910687091315400, −4.47073029822226100270455099896, −3.88816374686518382818613341114, −3.50402801172082537256356145911, −2.95041560502240512540940991021, −2.34522358440884180999113886745, −2.04697187072846738510564596377, −1.24474527390506146238494436048, −0.47076910174565786246861024592,
0.47076910174565786246861024592, 1.24474527390506146238494436048, 2.04697187072846738510564596377, 2.34522358440884180999113886745, 2.95041560502240512540940991021, 3.50402801172082537256356145911, 3.88816374686518382818613341114, 4.47073029822226100270455099896, 4.89148071841182910687091315400, 5.05640537320441894785617631505, 5.78738706852668711508938914379, 6.00748604342774431415303044952, 6.63533842994695874337372444054, 6.87296624703370658242518001585, 7.33661936490695083674831742076, 7.40784544888046377444052101226, 8.297128464064606045304138325176, 8.393135543397082230969700621486, 8.872238150144058509099300033791, 9.051958995200110935297158929877