L(s) = 1 | − 12·17-s − 8·19-s + 2·25-s − 12·41-s − 8·43-s − 2·49-s − 24·59-s + 8·67-s − 4·73-s + 12·89-s − 4·97-s − 24·107-s + 12·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2.91·17-s − 1.83·19-s + 2/5·25-s − 1.87·41-s − 1.21·43-s − 2/7·49-s − 3.12·59-s + 0.977·67-s − 0.468·73-s + 1.27·89-s − 0.406·97-s − 2.32·107-s + 1.12·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(5308416s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(5308416s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5308416
= 216⋅34
|
Sign: |
1
|
Analytic conductor: |
338.469 |
Root analytic conductor: |
4.28923 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 5308416, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | C22 | 1+50T2+p2T4 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1+46T2+p2T4 |
| 53 | C22 | 1+94T2+p2T4 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C22 | 1+74T2+p2T4 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1+94T2+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+50T2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.015531523845900068320152927652, −8.443354404956822832722380798542, −8.057050852209817655105485886173, −7.86852777929663488987876925219, −7.08867804479557123672170829895, −6.68571996650659968785279685501, −6.58327905646539781450949091397, −6.32027506245078211169784598159, −5.73825499223907028216052868382, −5.06182597172327518291954383062, −4.63929477064860348917448634603, −4.63027211397494488448464931756, −3.87610903325282435480477851545, −3.63535021906343364664894789563, −2.77122505365859789286595438287, −2.49260455118983694588862785334, −1.85410503708777745297468497660, −1.49968114299870965218229307264, 0, 0,
1.49968114299870965218229307264, 1.85410503708777745297468497660, 2.49260455118983694588862785334, 2.77122505365859789286595438287, 3.63535021906343364664894789563, 3.87610903325282435480477851545, 4.63027211397494488448464931756, 4.63929477064860348917448634603, 5.06182597172327518291954383062, 5.73825499223907028216052868382, 6.32027506245078211169784598159, 6.58327905646539781450949091397, 6.68571996650659968785279685501, 7.08867804479557123672170829895, 7.86852777929663488987876925219, 8.057050852209817655105485886173, 8.443354404956822832722380798542, 9.015531523845900068320152927652