Properties

Label 4-48e3-1.1-c1e2-0-3
Degree $4$
Conductor $110592$
Sign $1$
Analytic cond. $7.05144$
Root an. cond. $1.62955$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 4·13-s + 8·23-s + 2·25-s + 27-s + 4·37-s − 4·39-s + 8·47-s + 2·49-s + 24·59-s + 4·61-s + 8·69-s + 8·71-s − 12·73-s + 2·75-s + 81-s − 16·83-s − 12·97-s + 8·107-s + 12·109-s + 4·111-s − 4·117-s − 6·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.10·13-s + 1.66·23-s + 2/5·25-s + 0.192·27-s + 0.657·37-s − 0.640·39-s + 1.16·47-s + 2/7·49-s + 3.12·59-s + 0.512·61-s + 0.963·69-s + 0.949·71-s − 1.40·73-s + 0.230·75-s + 1/9·81-s − 1.75·83-s − 1.21·97-s + 0.773·107-s + 1.14·109-s + 0.379·111-s − 0.369·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(110592\)    =    \(2^{12} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(7.05144\)
Root analytic conductor: \(1.62955\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 110592,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.882887730\)
\(L(\frac12)\) \(\approx\) \(1.882887730\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.441458527347827045314306362484, −9.031290177123584089968069673475, −8.505176949138939806765746980171, −8.173514554803442734671541133944, −7.32328213459775648078965393123, −7.15170496964375224529488571068, −6.75011296795482591362571637167, −5.82998430379572433726607082968, −5.36491761982195510321568888557, −4.75117524706476146238747265245, −4.22069817552665673087881290479, −3.47738164570821613705383822117, −2.73018428216902765717531355398, −2.27617566150396406286489395179, −1.01010663988588321749755795699, 1.01010663988588321749755795699, 2.27617566150396406286489395179, 2.73018428216902765717531355398, 3.47738164570821613705383822117, 4.22069817552665673087881290479, 4.75117524706476146238747265245, 5.36491761982195510321568888557, 5.82998430379572433726607082968, 6.75011296795482591362571637167, 7.15170496964375224529488571068, 7.32328213459775648078965393123, 8.173514554803442734671541133944, 8.505176949138939806765746980171, 9.031290177123584089968069673475, 9.441458527347827045314306362484

Graph of the $Z$-function along the critical line