L(s) = 1 | + 3-s + 9-s − 4·13-s + 8·23-s + 2·25-s + 27-s + 4·37-s − 4·39-s + 8·47-s + 2·49-s + 24·59-s + 4·61-s + 8·69-s + 8·71-s − 12·73-s + 2·75-s + 81-s − 16·83-s − 12·97-s + 8·107-s + 12·109-s + 4·111-s − 4·117-s − 6·121-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.10·13-s + 1.66·23-s + 2/5·25-s + 0.192·27-s + 0.657·37-s − 0.640·39-s + 1.16·47-s + 2/7·49-s + 3.12·59-s + 0.512·61-s + 0.963·69-s + 0.949·71-s − 1.40·73-s + 0.230·75-s + 1/9·81-s − 1.75·83-s − 1.21·97-s + 0.773·107-s + 1.14·109-s + 0.379·111-s − 0.369·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(110592s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(110592s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
110592
= 212⋅33
|
Sign: |
1
|
Analytic conductor: |
7.05144 |
Root analytic conductor: |
1.62955 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 110592, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.882887730 |
L(21) |
≈ |
1.882887730 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1−T |
good | 5 | C22 | 1−2T2+p2T4 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 17 | C22 | 1+14T2+p2T4 |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 29 | C22 | 1−2T2+p2T4 |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 41 | C22 | 1−66T2+p2T4 |
| 43 | C22 | 1−26T2+p2T4 |
| 47 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 53 | C22 | 1+78T2+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1+54T2+p2T4 |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 79 | C22 | 1−82T2+p2T4 |
| 83 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 89 | C22 | 1−82T2+p2T4 |
| 97 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.441458527347827045314306362484, −9.031290177123584089968069673475, −8.505176949138939806765746980171, −8.173514554803442734671541133944, −7.32328213459775648078965393123, −7.15170496964375224529488571068, −6.75011296795482591362571637167, −5.82998430379572433726607082968, −5.36491761982195510321568888557, −4.75117524706476146238747265245, −4.22069817552665673087881290479, −3.47738164570821613705383822117, −2.73018428216902765717531355398, −2.27617566150396406286489395179, −1.01010663988588321749755795699,
1.01010663988588321749755795699, 2.27617566150396406286489395179, 2.73018428216902765717531355398, 3.47738164570821613705383822117, 4.22069817552665673087881290479, 4.75117524706476146238747265245, 5.36491761982195510321568888557, 5.82998430379572433726607082968, 6.75011296795482591362571637167, 7.15170496964375224529488571068, 7.32328213459775648078965393123, 8.173514554803442734671541133944, 8.505176949138939806765746980171, 9.031290177123584089968069673475, 9.441458527347827045314306362484