Dirichlet series
L(s) = 1 | + 3.18e6·3-s + 2.91e8·5-s − 1.21e11·7-s + 7.62e12·9-s + 2.31e14·11-s − 1.15e15·13-s + 9.29e14·15-s − 4.61e16·17-s + 2.68e17·19-s − 3.87e17·21-s − 1.29e18·23-s + 3.00e18·25-s + 1.62e19·27-s + 6.01e19·29-s − 2.03e20·31-s + 7.39e20·33-s − 3.54e19·35-s + 3.02e21·37-s − 3.68e21·39-s − 1.08e22·41-s + 1.29e21·43-s + 2.22e21·45-s + 9.93e22·47-s − 5.76e22·49-s − 1.47e23·51-s − 3.57e22·53-s + 6.75e22·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.106·5-s − 0.474·7-s + 9-s + 2.02·11-s − 1.05·13-s + 0.123·15-s − 1.12·17-s + 1.46·19-s − 0.547·21-s − 0.537·23-s + 0.402·25-s + 0.769·27-s + 1.08·29-s − 1.49·31-s + 2.33·33-s − 0.0506·35-s + 2.03·37-s − 1.22·39-s − 1.83·41-s + 0.115·43-s + 0.106·45-s + 2.65·47-s − 0.876·49-s − 1.30·51-s − 0.188·53-s + 0.216·55-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(2304\) = \(2^{8} \cdot 3^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(49146.7\) |
Root analytic conductor: | \(14.8892\) |
Motivic weight: | \(27\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 2304,\ (\ :27/2, 27/2),\ 1)\) |
Particular Values
\(L(14)\) | \(\approx\) | \(7.609185109\) |
\(L(\frac12)\) | \(\approx\) | \(7.609185109\) |
\(L(\frac{29}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | \( 1 \) | |
3 | $C_1$ | \( ( 1 - p^{13} T )^{2} \) | |
good | 5 | $D_{4}$ | \( 1 - 291441036 T - 23327953942428106 p^{3} T^{2} - 291441036 p^{27} T^{3} + p^{54} T^{4} \) |
7 | $D_{4}$ | \( 1 + 121646295328 T + \)\(21\!\cdots\!74\)\( p^{3} T^{2} + 121646295328 p^{27} T^{3} + p^{54} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 21073396524216 p T + \)\(27\!\cdots\!06\)\( p^{3} T^{2} - 21073396524216 p^{28} T^{3} + p^{54} T^{4} \) | |
13 | $D_{4}$ | \( 1 + 1155759271611764 T + \)\(93\!\cdots\!66\)\( p T^{2} + 1155759271611764 p^{27} T^{3} + p^{54} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 46125175777027452 T + \)\(75\!\cdots\!66\)\( p T^{2} + 46125175777027452 p^{27} T^{3} + p^{54} T^{4} \) | |
19 | $D_{4}$ | \( 1 - 14132623934381000 p T + \)\(13\!\cdots\!98\)\( p^{2} T^{2} - 14132623934381000 p^{28} T^{3} + p^{54} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 56502692435040432 p T + \)\(14\!\cdots\!42\)\( p^{2} T^{2} + 56502692435040432 p^{28} T^{3} + p^{54} T^{4} \) | |
29 | $D_{4}$ | \( 1 - 60178362995785587900 T + \)\(58\!\cdots\!18\)\( T^{2} - 60178362995785587900 p^{27} T^{3} + p^{54} T^{4} \) | |
31 | $D_{4}$ | \( 1 + \)\(20\!\cdots\!44\)\( T + \)\(46\!\cdots\!06\)\( T^{2} + \)\(20\!\cdots\!44\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
37 | $D_{4}$ | \( 1 - \)\(30\!\cdots\!88\)\( T + \)\(58\!\cdots\!02\)\( T^{2} - \)\(30\!\cdots\!88\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!16\)\( T + \)\(78\!\cdots\!26\)\( T^{2} + \)\(10\!\cdots\!16\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
43 | $D_{4}$ | \( 1 - \)\(12\!\cdots\!44\)\( T + \)\(19\!\cdots\!98\)\( T^{2} - \)\(12\!\cdots\!44\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
47 | $D_{4}$ | \( 1 - \)\(99\!\cdots\!32\)\( T + \)\(47\!\cdots\!82\)\( T^{2} - \)\(99\!\cdots\!32\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
53 | $D_{4}$ | \( 1 + \)\(35\!\cdots\!24\)\( T + \)\(13\!\cdots\!18\)\( T^{2} + \)\(35\!\cdots\!24\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(29\!\cdots\!80\)\( T + \)\(12\!\cdots\!38\)\( T^{2} + \)\(29\!\cdots\!80\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(21\!\cdots\!24\)\( T + \)\(33\!\cdots\!86\)\( T^{2} - \)\(21\!\cdots\!24\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(13\!\cdots\!08\)\( T + \)\(83\!\cdots\!62\)\( T^{2} + \)\(13\!\cdots\!08\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
71 | $D_{4}$ | \( 1 - \)\(43\!\cdots\!36\)\( T + \)\(70\!\cdots\!06\)\( T^{2} - \)\(43\!\cdots\!36\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(20\!\cdots\!64\)\( T + \)\(49\!\cdots\!18\)\( T^{2} + \)\(20\!\cdots\!64\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(56\!\cdots\!00\)\( T + \)\(24\!\cdots\!18\)\( T^{2} + \)\(56\!\cdots\!00\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(46\!\cdots\!04\)\( T + \)\(12\!\cdots\!58\)\( T^{2} - \)\(46\!\cdots\!04\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
89 | $D_{4}$ | \( 1 + \)\(19\!\cdots\!80\)\( T + \)\(45\!\cdots\!58\)\( T^{2} + \)\(19\!\cdots\!80\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(54\!\cdots\!68\)\( T + \)\(94\!\cdots\!82\)\( T^{2} - \)\(54\!\cdots\!68\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−10.94436693500532443005117157072, −10.16615095017602300676912623779, −9.690470117714450293190299982649, −9.330698331600928852650419157591, −8.865676492525466583574453318746, −8.495997507737936948496271897935, −7.48621736765211734997499098291, −7.30796439538500621827271816730, −6.70625691975758057482531836782, −6.18841066958626046258365738347, −5.50476369418244116681712293780, −4.59647152603746605198860374674, −4.28148016975867483145426968632, −3.75246637682478132245336427694, −2.96148040917870694438810242911, −2.88897734265127925217414309474, −1.81038388398900894849820668871, −1.80636949032861795819643728766, −0.865440736491405725008687668011, −0.52071941934844237508838271620, 0.52071941934844237508838271620, 0.865440736491405725008687668011, 1.80636949032861795819643728766, 1.81038388398900894849820668871, 2.88897734265127925217414309474, 2.96148040917870694438810242911, 3.75246637682478132245336427694, 4.28148016975867483145426968632, 4.59647152603746605198860374674, 5.50476369418244116681712293780, 6.18841066958626046258365738347, 6.70625691975758057482531836782, 7.30796439538500621827271816730, 7.48621736765211734997499098291, 8.495997507737936948496271897935, 8.865676492525466583574453318746, 9.330698331600928852650419157591, 9.690470117714450293190299982649, 10.16615095017602300676912623779, 10.94436693500532443005117157072