L(s) = 1 | + 8·7-s + 9-s + 12·17-s + 25-s − 16·31-s − 12·41-s + 34·49-s + 8·63-s + 4·73-s − 16·79-s + 81-s + 36·89-s + 4·97-s + 8·103-s − 36·113-s + 96·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 3.02·7-s + 1/3·9-s + 2.91·17-s + 1/5·25-s − 2.87·31-s − 1.87·41-s + 34/7·49-s + 1.00·63-s + 0.468·73-s − 1.80·79-s + 1/9·81-s + 3.81·89-s + 0.406·97-s + 0.788·103-s − 3.38·113-s + 8.80·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(230400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(230400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
230400
= 210⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
14.6905 |
Root analytic conductor: |
1.95775 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 230400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.846540973 |
L(21) |
≈ |
2.846540973 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−18T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.082506062594783472831133921500, −8.307525687782695431948900879973, −7.965215938754459889106897012614, −7.71052407307967077644420749342, −7.38482725826507043429631860666, −6.76895238282715006434981339956, −5.76555679083117871916592673419, −5.48025531888955534300415720953, −4.95303891523898796353167575120, −4.84143328212506167706839183620, −3.69936628544405197022333195268, −3.62987230449253956202768748221, −2.39041205999551187286748903960, −1.44399343799308961081305068602, −1.43294542786364492056174526795,
1.43294542786364492056174526795, 1.44399343799308961081305068602, 2.39041205999551187286748903960, 3.62987230449253956202768748221, 3.69936628544405197022333195268, 4.84143328212506167706839183620, 4.95303891523898796353167575120, 5.48025531888955534300415720953, 5.76555679083117871916592673419, 6.76895238282715006434981339956, 7.38482725826507043429631860666, 7.71052407307967077644420749342, 7.965215938754459889106897012614, 8.307525687782695431948900879973, 9.082506062594783472831133921500