Properties

Label 4-480e2-1.1-c1e2-0-51
Degree $4$
Conductor $230400$
Sign $1$
Analytic cond. $14.6905$
Root an. cond. $1.95775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s + 9-s + 12·17-s + 25-s − 16·31-s − 12·41-s + 34·49-s + 8·63-s + 4·73-s − 16·79-s + 81-s + 36·89-s + 4·97-s + 8·103-s − 36·113-s + 96·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3.02·7-s + 1/3·9-s + 2.91·17-s + 1/5·25-s − 2.87·31-s − 1.87·41-s + 34/7·49-s + 1.00·63-s + 0.468·73-s − 1.80·79-s + 1/9·81-s + 3.81·89-s + 0.406·97-s + 0.788·103-s − 3.38·113-s + 8.80·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(230400\)    =    \(2^{10} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(14.6905\)
Root analytic conductor: \(1.95775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 230400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.846540973\)
\(L(\frac12)\) \(\approx\) \(2.846540973\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.082506062594783472831133921500, −8.307525687782695431948900879973, −7.965215938754459889106897012614, −7.71052407307967077644420749342, −7.38482725826507043429631860666, −6.76895238282715006434981339956, −5.76555679083117871916592673419, −5.48025531888955534300415720953, −4.95303891523898796353167575120, −4.84143328212506167706839183620, −3.69936628544405197022333195268, −3.62987230449253956202768748221, −2.39041205999551187286748903960, −1.44399343799308961081305068602, −1.43294542786364492056174526795, 1.43294542786364492056174526795, 1.44399343799308961081305068602, 2.39041205999551187286748903960, 3.62987230449253956202768748221, 3.69936628544405197022333195268, 4.84143328212506167706839183620, 4.95303891523898796353167575120, 5.48025531888955534300415720953, 5.76555679083117871916592673419, 6.76895238282715006434981339956, 7.38482725826507043429631860666, 7.71052407307967077644420749342, 7.965215938754459889106897012614, 8.307525687782695431948900879973, 9.082506062594783472831133921500

Graph of the $Z$-function along the critical line