Properties

Label 4-480e2-1.1-c1e2-0-34
Degree $4$
Conductor $230400$
Sign $-1$
Analytic cond. $14.6905$
Root an. cond. $1.95775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 9-s − 4·17-s + 16·23-s + 25-s + 20·41-s − 16·47-s + 34·49-s − 8·63-s − 28·73-s − 32·79-s + 81-s + 4·89-s + 4·97-s − 8·103-s + 12·113-s + 32·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s − 128·161-s + ⋯
L(s)  = 1  − 3.02·7-s + 1/3·9-s − 0.970·17-s + 3.33·23-s + 1/5·25-s + 3.12·41-s − 2.33·47-s + 34/7·49-s − 1.00·63-s − 3.27·73-s − 3.60·79-s + 1/9·81-s + 0.423·89-s + 0.406·97-s − 0.788·103-s + 1.12·113-s + 2.93·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s − 10.0·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(230400\)    =    \(2^{10} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(14.6905\)
Root analytic conductor: \(1.95775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 230400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.931256392945798101264819577475, −8.620274137521206455931441584726, −7.45166089807995498253197140252, −7.31616880556813656693675020931, −6.73102949270507316916720435534, −6.49211773175788373093258725474, −6.00871420537581383609527234257, −5.45298154060946963380399619268, −4.63883887090438359185158186412, −4.19366402654330570965762069528, −3.39015414339768891989414504202, −2.85965731186513405981248890470, −2.75290686228331533750926083473, −1.16849564057756810686392475492, 0, 1.16849564057756810686392475492, 2.75290686228331533750926083473, 2.85965731186513405981248890470, 3.39015414339768891989414504202, 4.19366402654330570965762069528, 4.63883887090438359185158186412, 5.45298154060946963380399619268, 6.00871420537581383609527234257, 6.49211773175788373093258725474, 6.73102949270507316916720435534, 7.31616880556813656693675020931, 7.45166089807995498253197140252, 8.620274137521206455931441584726, 8.931256392945798101264819577475

Graph of the $Z$-function along the critical line