L(s) = 1 | − 8·7-s + 9-s − 4·17-s + 16·23-s + 25-s + 20·41-s − 16·47-s + 34·49-s − 8·63-s − 28·73-s − 32·79-s + 81-s + 4·89-s + 4·97-s − 8·103-s + 12·113-s + 32·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s − 128·161-s + ⋯ |
L(s) = 1 | − 3.02·7-s + 1/3·9-s − 0.970·17-s + 3.33·23-s + 1/5·25-s + 3.12·41-s − 2.33·47-s + 34/7·49-s − 1.00·63-s − 3.27·73-s − 3.60·79-s + 1/9·81-s + 0.423·89-s + 0.406·97-s − 0.788·103-s + 1.12·113-s + 2.93·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s − 10.0·161-s + ⋯ |
Λ(s)=(=(230400s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(230400s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
230400
= 210⋅32⋅52
|
Sign: |
−1
|
Analytic conductor: |
14.6905 |
Root analytic conductor: |
1.95775 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 230400, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1+4T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−8T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+14T+pT2)2 |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.931256392945798101264819577475, −8.620274137521206455931441584726, −7.45166089807995498253197140252, −7.31616880556813656693675020931, −6.73102949270507316916720435534, −6.49211773175788373093258725474, −6.00871420537581383609527234257, −5.45298154060946963380399619268, −4.63883887090438359185158186412, −4.19366402654330570965762069528, −3.39015414339768891989414504202, −2.85965731186513405981248890470, −2.75290686228331533750926083473, −1.16849564057756810686392475492, 0,
1.16849564057756810686392475492, 2.75290686228331533750926083473, 2.85965731186513405981248890470, 3.39015414339768891989414504202, 4.19366402654330570965762069528, 4.63883887090438359185158186412, 5.45298154060946963380399619268, 6.00871420537581383609527234257, 6.49211773175788373093258725474, 6.73102949270507316916720435534, 7.31616880556813656693675020931, 7.45166089807995498253197140252, 8.620274137521206455931441584726, 8.931256392945798101264819577475