L(s) = 1 | − 3·3-s − 3·5-s + 2·7-s + 4·9-s + 2·11-s − 6·13-s + 9·15-s − 2·17-s − 12·19-s − 6·21-s + 2·23-s − 6·27-s − 10·29-s − 17·31-s − 6·33-s − 6·35-s + 18·39-s + 41-s − 5·43-s − 12·45-s + 20·47-s + 3·49-s + 6·51-s + 5·53-s − 6·55-s + 36·57-s − 4·59-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.34·5-s + 0.755·7-s + 4/3·9-s + 0.603·11-s − 1.66·13-s + 2.32·15-s − 0.485·17-s − 2.75·19-s − 1.30·21-s + 0.417·23-s − 1.15·27-s − 1.85·29-s − 3.05·31-s − 1.04·33-s − 1.01·35-s + 2.88·39-s + 0.156·41-s − 0.762·43-s − 1.78·45-s + 2.91·47-s + 3/7·49-s + 0.840·51-s + 0.686·53-s − 0.809·55-s + 4.76·57-s − 0.520·59-s + ⋯ |
Λ(s)=(=(226576s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(226576s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
226576
= 24⋅72⋅172
|
Sign: |
1
|
Analytic conductor: |
14.4466 |
Root analytic conductor: |
1.94958 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 226576, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)2 |
| 17 | C1 | (1+T)2 |
good | 3 | C4 | 1+pT+5T2+p2T3+p2T4 |
| 5 | D4 | 1+3T+9T2+3pT3+p2T4 |
| 11 | D4 | 1−2T+10T2−2pT3+p2T4 |
| 13 | D4 | 1+6T+22T2+6pT3+p2T4 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | D4 | 1−2T+34T2−2pT3+p2T4 |
| 29 | D4 | 1+10T+70T2+10pT3+p2T4 |
| 31 | D4 | 1+17T+131T2+17pT3+p2T4 |
| 37 | C22 | 1+22T2+p2T4 |
| 41 | D4 | 1−T+T2−pT3+p2T4 |
| 43 | C4 | 1+5T+89T2+5pT3+p2T4 |
| 47 | C2 | (1−10T+pT2)2 |
| 53 | D4 | 1−5T+109T2−5pT3+p2T4 |
| 59 | D4 | 1+4T+70T2+4pT3+p2T4 |
| 61 | D4 | 1+5T+125T2+5pT3+p2T4 |
| 67 | D4 | 1−9T+151T2−9pT3+p2T4 |
| 71 | C2 | (1+2T+pT2)2 |
| 73 | D4 | 1+9T+85T2+9pT3+p2T4 |
| 79 | C2 | (1+6T+pT2)2 |
| 83 | D4 | 1−4T+118T2−4pT3+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | D4 | 1+15T+221T2+15pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85696882384837336755774984979, −10.79420332340129358871089145272, −10.08964048887404750722789904321, −9.440023554094045298409228756394, −8.838366900915876296429655943828, −8.739793279493932851068109336666, −7.76481959306128598922806051066, −7.50073954977690814783436592085, −7.15387354484516515755702646157, −6.70385753197726502977657401306, −5.85128632622433463351478609513, −5.69114875933762450620973709082, −5.09277283063707884389548729149, −4.47554244256704604327094464595, −4.01621350754607537551052472636, −3.80293690894226375210320066440, −2.32822010793954904243592174695, −1.80826892973584175146586308601, 0, 0,
1.80826892973584175146586308601, 2.32822010793954904243592174695, 3.80293690894226375210320066440, 4.01621350754607537551052472636, 4.47554244256704604327094464595, 5.09277283063707884389548729149, 5.69114875933762450620973709082, 5.85128632622433463351478609513, 6.70385753197726502977657401306, 7.15387354484516515755702646157, 7.50073954977690814783436592085, 7.76481959306128598922806051066, 8.739793279493932851068109336666, 8.838366900915876296429655943828, 9.440023554094045298409228756394, 10.08964048887404750722789904321, 10.79420332340129358871089145272, 10.85696882384837336755774984979