L(s) = 1 | + 4-s + 2·7-s − 9-s + 2·11-s + 16-s + 12·23-s − 2·25-s + 2·28-s − 10·29-s − 36-s + 2·37-s − 4·43-s + 2·44-s − 3·49-s + 10·53-s − 2·63-s + 64-s + 2·67-s − 2·71-s + 4·77-s + 32·79-s + 81-s + 12·92-s − 2·99-s − 2·100-s + 2·107-s + 32·109-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 0.755·7-s − 1/3·9-s + 0.603·11-s + 1/4·16-s + 2.50·23-s − 2/5·25-s + 0.377·28-s − 1.85·29-s − 1/6·36-s + 0.328·37-s − 0.609·43-s + 0.301·44-s − 3/7·49-s + 1.37·53-s − 0.251·63-s + 1/8·64-s + 0.244·67-s − 0.237·71-s + 0.455·77-s + 3.60·79-s + 1/9·81-s + 1.25·92-s − 0.201·99-s − 1/5·100-s + 0.193·107-s + 3.06·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.229530679\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.229530679\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.071847077468094801685981044147, −8.573608111482918720490368649868, −8.144145438448620747718683711539, −7.45310891683710979012343198366, −7.26645047823184585184484401405, −6.70827284064146508683978523642, −6.13370449196136291440850350111, −5.63447221482099229690466066259, −4.98354907985743638927001979494, −4.75269561134398220102237601082, −3.70425039823523205749891936368, −3.45801353566867138481956888073, −2.52758932872561215881814473405, −1.88606036963751703925724745625, −1.00124895632195069334182774366,
1.00124895632195069334182774366, 1.88606036963751703925724745625, 2.52758932872561215881814473405, 3.45801353566867138481956888073, 3.70425039823523205749891936368, 4.75269561134398220102237601082, 4.98354907985743638927001979494, 5.63447221482099229690466066259, 6.13370449196136291440850350111, 6.70827284064146508683978523642, 7.26645047823184585184484401405, 7.45310891683710979012343198366, 8.144145438448620747718683711539, 8.573608111482918720490368649868, 9.071847077468094801685981044147