Properties

Label 4-46208-1.1-c1e2-0-1
Degree $4$
Conductor $46208$
Sign $1$
Analytic cond. $2.94626$
Root an. cond. $1.31014$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 6·7-s + 8-s − 5·9-s + 6·14-s + 16-s + 6·17-s − 5·18-s − 2·23-s + 6·25-s + 6·28-s − 16·31-s + 32-s + 6·34-s − 5·36-s − 16·41-s − 2·46-s + 16·47-s + 13·49-s + 6·50-s + 6·56-s − 16·62-s − 30·63-s + 64-s + 6·68-s + 4·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 2.26·7-s + 0.353·8-s − 5/3·9-s + 1.60·14-s + 1/4·16-s + 1.45·17-s − 1.17·18-s − 0.417·23-s + 6/5·25-s + 1.13·28-s − 2.87·31-s + 0.176·32-s + 1.02·34-s − 5/6·36-s − 2.49·41-s − 0.294·46-s + 2.33·47-s + 13/7·49-s + 0.848·50-s + 0.801·56-s − 2.03·62-s − 3.77·63-s + 1/8·64-s + 0.727·68-s + 0.474·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46208 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46208 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46208\)    =    \(2^{7} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.94626\)
Root analytic conductor: \(1.31014\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 46208,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.372920982\)
\(L(\frac12)\) \(\approx\) \(2.372920982\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
59$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44209956582501917351653608378, −9.673084911618933118181680374348, −8.905991841422638352773015657402, −8.408486909011940238981299566497, −8.264845552131759886230905508728, −7.41068992206199799917476516665, −7.25038064772684706053554512263, −6.17646264461499634926610391599, −5.50702009116960948045704530045, −5.28069074518443602737935578596, −4.86338510531971803230901631456, −3.86057015395193111701613139713, −3.27846026315236304587310905813, −2.31224961625843070084602752549, −1.49207601742473373563863301755, 1.49207601742473373563863301755, 2.31224961625843070084602752549, 3.27846026315236304587310905813, 3.86057015395193111701613139713, 4.86338510531971803230901631456, 5.28069074518443602737935578596, 5.50702009116960948045704530045, 6.17646264461499634926610391599, 7.25038064772684706053554512263, 7.41068992206199799917476516665, 8.264845552131759886230905508728, 8.408486909011940238981299566497, 8.905991841422638352773015657402, 9.673084911618933118181680374348, 10.44209956582501917351653608378

Graph of the $Z$-function along the critical line