L(s) = 1 | + 2-s + 4-s + 6·7-s + 8-s − 5·9-s + 6·14-s + 16-s + 6·17-s − 5·18-s − 2·23-s + 6·25-s + 6·28-s − 16·31-s + 32-s + 6·34-s − 5·36-s − 16·41-s − 2·46-s + 16·47-s + 13·49-s + 6·50-s + 6·56-s − 16·62-s − 30·63-s + 64-s + 6·68-s + 4·71-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 2.26·7-s + 0.353·8-s − 5/3·9-s + 1.60·14-s + 1/4·16-s + 1.45·17-s − 1.17·18-s − 0.417·23-s + 6/5·25-s + 1.13·28-s − 2.87·31-s + 0.176·32-s + 1.02·34-s − 5/6·36-s − 2.49·41-s − 0.294·46-s + 2.33·47-s + 13/7·49-s + 0.848·50-s + 0.801·56-s − 2.03·62-s − 3.77·63-s + 1/8·64-s + 0.727·68-s + 0.474·71-s + ⋯ |
Λ(s)=(=(46208s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(46208s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
46208
= 27⋅192
|
Sign: |
1
|
Analytic conductor: |
2.94626 |
Root analytic conductor: |
1.31014 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 46208, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.372920982 |
L(21) |
≈ |
2.372920982 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C2 | (1−3T+pT2)2 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−T+pT2)(1+T+pT2) |
| 17 | C2 | (1−3T+pT2)2 |
| 23 | C2 | (1+T+pT2)2 |
| 29 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1+8T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−T+pT2)(1+T+pT2) |
| 59 | C2 | (1−15T+pT2)(1+15T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 71 | C2 | (1−2T+pT2)2 |
| 73 | C2 | (1−9T+pT2)2 |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44209956582501917351653608378, −9.673084911618933118181680374348, −8.905991841422638352773015657402, −8.408486909011940238981299566497, −8.264845552131759886230905508728, −7.41068992206199799917476516665, −7.25038064772684706053554512263, −6.17646264461499634926610391599, −5.50702009116960948045704530045, −5.28069074518443602737935578596, −4.86338510531971803230901631456, −3.86057015395193111701613139713, −3.27846026315236304587310905813, −2.31224961625843070084602752549, −1.49207601742473373563863301755,
1.49207601742473373563863301755, 2.31224961625843070084602752549, 3.27846026315236304587310905813, 3.86057015395193111701613139713, 4.86338510531971803230901631456, 5.28069074518443602737935578596, 5.50702009116960948045704530045, 6.17646264461499634926610391599, 7.25038064772684706053554512263, 7.41068992206199799917476516665, 8.264845552131759886230905508728, 8.408486909011940238981299566497, 8.905991841422638352773015657402, 9.673084911618933118181680374348, 10.44209956582501917351653608378