Properties

Label 4-460800-1.1-c1e2-0-12
Degree $4$
Conductor $460800$
Sign $1$
Analytic cond. $29.3810$
Root an. cond. $2.32818$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·9-s + 3·25-s − 4·29-s − 6·45-s + 2·49-s + 12·53-s + 20·73-s + 9·81-s + 4·97-s + 12·101-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 0.894·5-s − 9-s + 3/5·25-s − 0.742·29-s − 0.894·45-s + 2/7·49-s + 1.64·53-s + 2.34·73-s + 81-s + 0.406·97-s + 1.19·101-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 460800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(460800\)    =    \(2^{11} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(29.3810\)
Root analytic conductor: \(2.32818\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 460800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.898169199\)
\(L(\frac12)\) \(\approx\) \(1.898169199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.553763350172173214830647596268, −8.232094164874916399482119953313, −7.66923221369575147422434947666, −7.17756370139367675925186485217, −6.62939534411560437700705962812, −6.24493166094866962383206803305, −5.69666490725776974011178109689, −5.37857675108188839245052886761, −4.94897715264491245217176175611, −4.17961073870792015197438446766, −3.61563115039431469539014078391, −2.98552164392524700166139297507, −2.36109081293852701197155332036, −1.85002262761065550940770768931, −0.73361553279211959590738050197, 0.73361553279211959590738050197, 1.85002262761065550940770768931, 2.36109081293852701197155332036, 2.98552164392524700166139297507, 3.61563115039431469539014078391, 4.17961073870792015197438446766, 4.94897715264491245217176175611, 5.37857675108188839245052886761, 5.69666490725776974011178109689, 6.24493166094866962383206803305, 6.62939534411560437700705962812, 7.17756370139367675925186485217, 7.66923221369575147422434947666, 8.232094164874916399482119953313, 8.553763350172173214830647596268

Graph of the $Z$-function along the critical line