L(s) = 1 | + 140·4-s − 150·5-s + 1.36e4·11-s + 3.21e3·16-s + 1.37e4·19-s − 2.10e4·20-s − 5.56e4·25-s − 5.11e4·29-s + 1.64e5·31-s + 1.06e6·41-s + 1.91e6·44-s + 1.47e6·49-s − 2.04e6·55-s − 2.87e6·59-s + 2.76e6·61-s − 1.84e6·64-s + 9.63e5·71-s + 1.92e6·76-s − 2.11e6·79-s − 4.82e5·80-s − 1.12e7·89-s − 2.05e6·95-s − 7.78e6·100-s − 1.02e7·101-s − 4.02e7·109-s − 7.16e6·116-s + 1.00e8·121-s + ⋯ |
L(s) = 1 | + 1.09·4-s − 0.536·5-s + 3.09·11-s + 0.196·16-s + 0.458·19-s − 0.586·20-s − 0.711·25-s − 0.389·29-s + 0.990·31-s + 2.41·41-s + 3.38·44-s + 1.78·49-s − 1.66·55-s − 1.82·59-s + 1.55·61-s − 0.879·64-s + 0.319·71-s + 0.501·76-s − 0.483·79-s − 0.105·80-s − 1.69·89-s − 0.246·95-s − 0.778·100-s − 0.993·101-s − 2.97·109-s − 0.426·116-s + 5.17·121-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(2025s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
197.608 |
Root analytic conductor: |
3.74931 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2025, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
3.903722905 |
L(21) |
≈ |
3.903722905 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+6p2T+p7T2 |
good | 2 | C22 | 1−35p2T2+p14T4 |
| 7 | C22 | 1−1470650T2+p14T4 |
| 11 | C2 | (1−6828T+p7T2)2 |
| 13 | C22 | 1−22562810T2+p14T4 |
| 17 | C22 | 1−574764770T2+p14T4 |
| 19 | C2 | (1−6860T+p7T2)2 |
| 23 | C22 | 1−5955848090T2+p14T4 |
| 29 | C2 | (1+25590T+p7T2)2 |
| 31 | C2 | (1−82112T+p7T2)2 |
| 37 | C22 | 1−139899246410T2+p14T4 |
| 41 | C2 | (1−533118T+p7T2)2 |
| 43 | C22 | 1−41047812050T2+p14T4 |
| 47 | C22 | 1−1013212289930T2+p14T4 |
| 53 | C22 | 1−2002060594730T2+p14T4 |
| 59 | C2 | (1+1438980T+p7T2)2 |
| 61 | C2 | (1−1381022T+p7T2)2 |
| 67 | C22 | 1−4750924642370T2+p14T4 |
| 71 | C2 | (1−481608T+p7T2)2 |
| 73 | C22 | 1−19886077213490T2+p14T4 |
| 79 | C2 | (1+1059760T+p7T2)2 |
| 83 | C22 | 1−47492314121570T2+p14T4 |
| 89 | C2 | (1+5644170T+p7T2)2 |
| 97 | C22 | 1−17378330046530T2+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.85850873474031755014631200360, −13.93749531021024401523168836935, −13.82952943561980649358367504562, −12.49156092167258249498568124097, −12.17186094012916599059941757749, −11.46333279955598812749814921761, −11.45677304368513362163578498724, −10.63010394160488768596802700449, −9.526725224418246340888049937428, −9.300680191322618217343810914870, −8.444145765490909196772012947001, −7.51820673238919932581996536550, −6.96331105988894652200716162107, −6.38462632311541072437273801660, −5.78175651523406429601359754259, −4.22058888768238047874571043759, −3.93174864754339985088084646245, −2.75577376786507715416427618552, −1.63558976467562824483261978922, −0.886640889462396556702910244681,
0.886640889462396556702910244681, 1.63558976467562824483261978922, 2.75577376786507715416427618552, 3.93174864754339985088084646245, 4.22058888768238047874571043759, 5.78175651523406429601359754259, 6.38462632311541072437273801660, 6.96331105988894652200716162107, 7.51820673238919932581996536550, 8.444145765490909196772012947001, 9.300680191322618217343810914870, 9.526725224418246340888049937428, 10.63010394160488768596802700449, 11.45677304368513362163578498724, 11.46333279955598812749814921761, 12.17186094012916599059941757749, 12.49156092167258249498568124097, 13.82952943561980649358367504562, 13.93749531021024401523168836935, 14.85850873474031755014631200360