L(s) = 1 | + 140·4-s − 150·5-s + 1.36e4·11-s + 3.21e3·16-s + 1.37e4·19-s − 2.10e4·20-s − 5.56e4·25-s − 5.11e4·29-s + 1.64e5·31-s + 1.06e6·41-s + 1.91e6·44-s + 1.47e6·49-s − 2.04e6·55-s − 2.87e6·59-s + 2.76e6·61-s − 1.84e6·64-s + 9.63e5·71-s + 1.92e6·76-s − 2.11e6·79-s − 4.82e5·80-s − 1.12e7·89-s − 2.05e6·95-s − 7.78e6·100-s − 1.02e7·101-s − 4.02e7·109-s − 7.16e6·116-s + 1.00e8·121-s + ⋯ |
L(s) = 1 | + 1.09·4-s − 0.536·5-s + 3.09·11-s + 0.196·16-s + 0.458·19-s − 0.586·20-s − 0.711·25-s − 0.389·29-s + 0.990·31-s + 2.41·41-s + 3.38·44-s + 1.78·49-s − 1.66·55-s − 1.82·59-s + 1.55·61-s − 0.879·64-s + 0.319·71-s + 0.501·76-s − 0.483·79-s − 0.105·80-s − 1.69·89-s − 0.246·95-s − 0.778·100-s − 0.993·101-s − 2.97·109-s − 0.426·116-s + 5.17·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(3.903722905\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.903722905\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 + 6 p^{2} T + p^{7} T^{2} \) |
good | 2 | $C_2^2$ | \( 1 - 35 p^{2} T^{2} + p^{14} T^{4} \) |
| 7 | $C_2^2$ | \( 1 - 1470650 T^{2} + p^{14} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - 6828 T + p^{7} T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 22562810 T^{2} + p^{14} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 574764770 T^{2} + p^{14} T^{4} \) |
| 19 | $C_2$ | \( ( 1 - 6860 T + p^{7} T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 - 5955848090 T^{2} + p^{14} T^{4} \) |
| 29 | $C_2$ | \( ( 1 + 25590 T + p^{7} T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 82112 T + p^{7} T^{2} )^{2} \) |
| 37 | $C_2^2$ | \( 1 - 139899246410 T^{2} + p^{14} T^{4} \) |
| 41 | $C_2$ | \( ( 1 - 533118 T + p^{7} T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 41047812050 T^{2} + p^{14} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 1013212289930 T^{2} + p^{14} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 2002060594730 T^{2} + p^{14} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + 1438980 T + p^{7} T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 1381022 T + p^{7} T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 4750924642370 T^{2} + p^{14} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 481608 T + p^{7} T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 - 19886077213490 T^{2} + p^{14} T^{4} \) |
| 79 | $C_2$ | \( ( 1 + 1059760 T + p^{7} T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 47492314121570 T^{2} + p^{14} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 5644170 T + p^{7} T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 - 17378330046530 T^{2} + p^{14} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.85850873474031755014631200360, −13.93749531021024401523168836935, −13.82952943561980649358367504562, −12.49156092167258249498568124097, −12.17186094012916599059941757749, −11.46333279955598812749814921761, −11.45677304368513362163578498724, −10.63010394160488768596802700449, −9.526725224418246340888049937428, −9.300680191322618217343810914870, −8.444145765490909196772012947001, −7.51820673238919932581996536550, −6.96331105988894652200716162107, −6.38462632311541072437273801660, −5.78175651523406429601359754259, −4.22058888768238047874571043759, −3.93174864754339985088084646245, −2.75577376786507715416427618552, −1.63558976467562824483261978922, −0.886640889462396556702910244681,
0.886640889462396556702910244681, 1.63558976467562824483261978922, 2.75577376786507715416427618552, 3.93174864754339985088084646245, 4.22058888768238047874571043759, 5.78175651523406429601359754259, 6.38462632311541072437273801660, 6.96331105988894652200716162107, 7.51820673238919932581996536550, 8.444145765490909196772012947001, 9.300680191322618217343810914870, 9.526725224418246340888049937428, 10.63010394160488768596802700449, 11.45677304368513362163578498724, 11.46333279955598812749814921761, 12.17186094012916599059941757749, 12.49156092167258249498568124097, 13.82952943561980649358367504562, 13.93749531021024401523168836935, 14.85850873474031755014631200360