L(s) = 1 | + 5·2-s − 9·4-s + 50·5-s + 80·7-s − 55·8-s + 250·10-s + 800·11-s − 120·13-s + 400·14-s − 193·16-s + 1.94e3·17-s − 1.51e3·19-s − 450·20-s + 4.00e3·22-s − 1.32e3·23-s + 1.87e3·25-s − 600·26-s − 720·28-s + 1.30e3·29-s − 5.82e3·31-s − 5.65e3·32-s + 9.70e3·34-s + 4.00e3·35-s − 1.25e4·37-s − 7.56e3·38-s − 2.75e3·40-s + 400·41-s + ⋯ |
L(s) = 1 | + 0.883·2-s − 0.281·4-s + 0.894·5-s + 0.617·7-s − 0.303·8-s + 0.790·10-s + 1.99·11-s − 0.196·13-s + 0.545·14-s − 0.188·16-s + 1.62·17-s − 0.960·19-s − 0.251·20-s + 1.76·22-s − 0.520·23-s + 3/5·25-s − 0.174·26-s − 0.173·28-s + 0.287·29-s − 1.08·31-s − 0.976·32-s + 1.43·34-s + 0.551·35-s − 1.50·37-s − 0.849·38-s − 0.271·40-s + 0.0371·41-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(2025s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
52.0890 |
Root analytic conductor: |
2.68649 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2025, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
4.313009369 |
L(21) |
≈ |
4.313009369 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−p2T)2 |
good | 2 | D4 | 1−5T+17pT2−5p5T3+p10T4 |
| 7 | D4 | 1−80T+20714T2−80p5T3+p10T4 |
| 11 | D4 | 1−800T+467602T2−800p5T3+p10T4 |
| 13 | D4 | 1+120T+514186T2+120p5T3+p10T4 |
| 17 | D4 | 1−1940T+3743494T2−1940p5T3+p10T4 |
| 19 | D4 | 1+1512T+1811734T2+1512p5T3+p10T4 |
| 23 | D4 | 1+1320T+4100206T2+1320p5T3+p10T4 |
| 29 | D4 | 1−1300T−17947202T2−1300p5T3+p10T4 |
| 31 | D4 | 1+5824T+58720046T2+5824p5T3+p10T4 |
| 37 | D4 | 1+12560T+102958314T2+12560p5T3+p10T4 |
| 41 | D4 | 1−400T+164704402T2−400p5T3+p10T4 |
| 43 | D4 | 1−25680T+399490486T2−25680p5T3+p10T4 |
| 47 | D4 | 1−18920T+546954334T2−18920p5T3+p10T4 |
| 53 | D4 | 1−49460T+1434563566T2−49460p5T3+p10T4 |
| 59 | D4 | 1−63200T+2393594098T2−63200p5T3+p10T4 |
| 61 | D4 | 1+49116T+1219519966T2+49116p5T3+p10T4 |
| 67 | D4 | 1−6080T+319369814T2−6080p5T3+p10T4 |
| 71 | D4 | 1−65200T+4591816702T2−65200p5T3+p10T4 |
| 73 | D4 | 1−97740T+5753972086T2−97740p5T3+p10T4 |
| 79 | D4 | 1+46288T+6429395534T2+46288p5T3+p10T4 |
| 83 | D4 | 1+57360T+4528611766T2+57360p5T3+p10T4 |
| 89 | D4 | 1+87000T+10502568898T2+87000p5T3+p10T4 |
| 97 | D4 | 1−10180T+16899916614T2−10180p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.66784970969022019510655850936, −14.37784536888453374327419702333, −14.03683634096722307094210643198, −13.68496200415498815155107445593, −12.61180369256250028057802710003, −12.48918967488013551504117405756, −11.77617916094901859396700299413, −11.01034771856315258632575862221, −10.32377565394036678169206692921, −9.596994509059774957244181837257, −9.023182964180726345828141504177, −8.460563802580778649482788226914, −7.35453074034000674602867122277, −6.66667448731695673263077309964, −5.70691639151721770956250193902, −5.29318868746665421033732889688, −4.15975404841838252730105105759, −3.76406847311085762487158546967, −2.13598064014564555158892296757, −1.11486975673290849705631102973,
1.11486975673290849705631102973, 2.13598064014564555158892296757, 3.76406847311085762487158546967, 4.15975404841838252730105105759, 5.29318868746665421033732889688, 5.70691639151721770956250193902, 6.66667448731695673263077309964, 7.35453074034000674602867122277, 8.460563802580778649482788226914, 9.023182964180726345828141504177, 9.596994509059774957244181837257, 10.32377565394036678169206692921, 11.01034771856315258632575862221, 11.77617916094901859396700299413, 12.48918967488013551504117405756, 12.61180369256250028057802710003, 13.68496200415498815155107445593, 14.03683634096722307094210643198, 14.37784536888453374327419702333, 14.66784970969022019510655850936