L(s) = 1 | + 20·4-s + 90·5-s − 504·11-s − 624·16-s − 440·19-s + 1.80e3·20-s + 4.97e3·25-s + 1.38e4·29-s + 1.35e4·31-s + 396·41-s − 1.00e4·44-s + 3.00e4·49-s − 4.53e4·55-s + 4.93e4·59-s − 1.13e4·61-s − 3.29e4·64-s − 1.06e5·71-s − 8.80e3·76-s + 1.03e5·79-s − 5.61e4·80-s + 1.99e4·89-s − 3.96e4·95-s + 9.95e4·100-s + 2.18e5·101-s − 4.20e4·109-s + 2.77e5·116-s − 1.31e5·121-s + ⋯ |
L(s) = 1 | + 5/8·4-s + 1.60·5-s − 1.25·11-s − 0.609·16-s − 0.279·19-s + 1.00·20-s + 1.59·25-s + 3.06·29-s + 2.52·31-s + 0.0367·41-s − 0.784·44-s + 1.78·49-s − 2.02·55-s + 1.84·59-s − 0.392·61-s − 1.00·64-s − 2.51·71-s − 0.174·76-s + 1.87·79-s − 0.981·80-s + 0.267·89-s − 0.450·95-s + 0.994·100-s + 2.12·101-s − 0.338·109-s + 1.91·116-s − 0.817·121-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(2025s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
52.0890 |
Root analytic conductor: |
2.68649 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2025, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
3.263728206 |
L(21) |
≈ |
3.263728206 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1−18pT+p5T2 |
good | 2 | C22 | 1−5p2T2+p10T4 |
| 7 | C22 | 1−30050T2+p10T4 |
| 11 | C2 | (1+252T+p5T2)2 |
| 13 | C22 | 1−728330T2+p10T4 |
| 17 | C22 | 1−2363810T2+p10T4 |
| 19 | C2 | (1+220T+p5T2)2 |
| 23 | C22 | 1−6946370T2+p10T4 |
| 29 | C2 | (1−6930T+p5T2)2 |
| 31 | C2 | (1−6752T+p5T2)2 |
| 37 | C22 | 1+56462470T2+p10T4 |
| 41 | C2 | (1−198T+p5T2)2 |
| 43 | C22 | 1−293842250T2+p10T4 |
| 47 | C22 | 1−347593490T2+p10T4 |
| 53 | C22 | 1−802472090T2+p10T4 |
| 59 | C2 | (1−24660T+p5T2)2 |
| 61 | C2 | (1+5698T+p5T2)2 |
| 67 | C22 | 1−795787610T2+p10T4 |
| 71 | C2 | (1+53352T+p5T2)2 |
| 73 | C22 | 1+883886830T2+p10T4 |
| 79 | C2 | (1−51920T+p5T2)2 |
| 83 | C22 | 1−4053674810T2+p10T4 |
| 89 | C2 | (1−9990T+p5T2)2 |
| 97 | C22 | 1−6923133890T2+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.37328280401321787132936946656, −14.32495061373711937131605361349, −13.88533960379769354094494703085, −13.44870478713871244123565871646, −12.98414098550329076800317843724, −12.07099147048482634046765730285, −11.73104783609597120170388968097, −10.57114513803079156106554651776, −10.34247707015070465266509454029, −9.964282482124206858491416597958, −8.911885214124723887739297804694, −8.418048433651762159224634439680, −7.48808201075511211134016280125, −6.44244651590754007683773395272, −6.31654591453785310420190729381, −5.22676072222744257576886987393, −4.57444132457676853726832937226, −2.64897320938473199539532211455, −2.49090330731543460257831706405, −1.02087537862008371301362993346,
1.02087537862008371301362993346, 2.49090330731543460257831706405, 2.64897320938473199539532211455, 4.57444132457676853726832937226, 5.22676072222744257576886987393, 6.31654591453785310420190729381, 6.44244651590754007683773395272, 7.48808201075511211134016280125, 8.418048433651762159224634439680, 8.911885214124723887739297804694, 9.964282482124206858491416597958, 10.34247707015070465266509454029, 10.57114513803079156106554651776, 11.73104783609597120170388968097, 12.07099147048482634046765730285, 12.98414098550329076800317843724, 13.44870478713871244123565871646, 13.88533960379769354094494703085, 14.32495061373711937131605361349, 15.37328280401321787132936946656