L(s) = 1 | − 10·2-s + 50·4-s + 50·5-s + 80·7-s − 160·8-s − 500·10-s − 200·11-s + 410·13-s − 800·14-s + 444·16-s + 470·17-s + 2.50e3·20-s + 2.00e3·22-s + 680·23-s + 1.87e3·25-s − 4.10e3·26-s + 4.00e3·28-s + 856·31-s − 1.88e3·32-s − 4.70e3·34-s + 4.00e3·35-s − 1.51e3·37-s − 8.00e3·40-s + 1.90e3·41-s − 2.44e3·43-s − 1.00e4·44-s − 6.80e3·46-s + ⋯ |
L(s) = 1 | − 5/2·2-s + 25/8·4-s + 2·5-s + 1.63·7-s − 5/2·8-s − 5·10-s − 1.65·11-s + 2.42·13-s − 4.08·14-s + 1.73·16-s + 1.62·17-s + 25/4·20-s + 4.13·22-s + 1.28·23-s + 3·25-s − 6.06·26-s + 5.10·28-s + 0.890·31-s − 1.83·32-s − 4.06·34-s + 3.26·35-s − 1.10·37-s − 5·40-s + 1.13·41-s − 1.31·43-s − 5.16·44-s − 3.21·46-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(2025s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
21.6378 |
Root analytic conductor: |
2.15676 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2025, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
1.025863956 |
L(21) |
≈ |
1.025863956 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−p2T)2 |
good | 2 | C22 | 1+5pT+25pT2+5p5T3+p8T4 |
| 7 | C22 | 1−80T+3200T2−80p4T3+p8T4 |
| 11 | C2 | (1+100T+p4T2)2 |
| 13 | C22 | 1−410T+84050T2−410p4T3+p8T4 |
| 17 | C22 | 1−470T+110450T2−470p4T3+p8T4 |
| 19 | C22 | 1−255458T2+p8T4 |
| 23 | C22 | 1−680T+231200T2−680p4T3+p8T4 |
| 29 | C22 | 1−1212062T2+p8T4 |
| 31 | C2 | (1−428T+p4T2)2 |
| 37 | C22 | 1+1510T+1140050T2+1510p4T3+p8T4 |
| 41 | C2 | (1−950T+p4T2)2 |
| 43 | C22 | 1+2440T+2976800T2+2440p4T3+p8T4 |
| 47 | C22 | 1+640T+204800T2+640p4T3+p8T4 |
| 53 | C22 | 1−1010T+510050T2−1010p4T3+p8T4 |
| 59 | C22 | 1+15455278T2+p8T4 |
| 61 | C2 | (1+3808T+p4T2)2 |
| 67 | C22 | 1−680T+231200T2−680p4T3+p8T4 |
| 71 | C2 | (1+3400T+p4T2)2 |
| 73 | C22 | 1−830T+344450T2−830p4T3+p8T4 |
| 79 | C22 | 1−32580338T2+p8T4 |
| 83 | C22 | 1+1360T+924800T2+1360p4T3+p8T4 |
| 89 | C22 | 1−120421982T2+p8T4 |
| 97 | C22 | 1−3230T+5216450T2−3230p4T3+p8T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.60902321995802157718247358034, −14.93335667345749484841391268839, −14.22887761342581863350793123036, −13.60469477727313725774403377547, −13.23243016215544772796885912275, −12.32798336888523913000149918694, −11.13863414495670208643152394214, −10.87071480473455952488790464967, −10.27816425535131573361315562552, −10.05764281745735347802030116292, −8.978313391807621173776114886713, −8.842516389332419937877742541108, −8.063258574828759974350640315673, −7.74570646486791488147425204999, −6.56798480812039893955511375980, −5.61584908961168104185922907072, −5.18008670430117112402853184422, −2.88303186380730606771898343364, −1.39363567087694261239185012619, −1.29531835230208170270457325946,
1.29531835230208170270457325946, 1.39363567087694261239185012619, 2.88303186380730606771898343364, 5.18008670430117112402853184422, 5.61584908961168104185922907072, 6.56798480812039893955511375980, 7.74570646486791488147425204999, 8.063258574828759974350640315673, 8.842516389332419937877742541108, 8.978313391807621173776114886713, 10.05764281745735347802030116292, 10.27816425535131573361315562552, 10.87071480473455952488790464967, 11.13863414495670208643152394214, 12.32798336888523913000149918694, 13.23243016215544772796885912275, 13.60469477727313725774403377547, 14.22887761342581863350793123036, 14.93335667345749484841391268839, 15.60902321995802157718247358034