L(s) = 1 | − 4-s − 3·16-s − 8·19-s − 5·25-s + 16·31-s + 14·49-s + 4·61-s + 7·64-s + 8·76-s − 32·79-s + 5·100-s + 28·109-s − 22·121-s − 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 3/4·16-s − 1.83·19-s − 25-s + 2.87·31-s + 2·49-s + 0.512·61-s + 7/8·64-s + 0.917·76-s − 3.60·79-s + 1/2·100-s + 2.68·109-s − 2·121-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
0.129115 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5869732169 |
L(21) |
≈ |
0.5869732169 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+pT2 |
good | 2 | C22 | 1+T2+p2T4 |
| 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−pT2)2 |
| 17 | C22 | 1−14T2+p2T4 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−pT2)2 |
| 47 | C22 | 1−14T2+p2T4 |
| 53 | C22 | 1−86T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−pT2)2 |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C22 | 1+154T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.04425621665513637432335881101, −15.39860978254693558799803182116, −15.31086366215355683397844908499, −14.18964599311887806872946724336, −14.03829554572186610771548305855, −13.15723379959748243640876161274, −12.96574043565923018826779476430, −11.92843380880703408712681539674, −11.66876266699699984465493727952, −10.71802248997556069743590768513, −10.18166894925267983021659200493, −9.570850536528072839705758819793, −8.529513714199935388900375216623, −8.506199327349381512983870230050, −7.36447877954871795658687378464, −6.52566376180141557577636495203, −5.84873109781954041807523169102, −4.63076666346438307078059690242, −4.10424053282794606423576741067, −2.49439517148849264400889437608,
2.49439517148849264400889437608, 4.10424053282794606423576741067, 4.63076666346438307078059690242, 5.84873109781954041807523169102, 6.52566376180141557577636495203, 7.36447877954871795658687378464, 8.506199327349381512983870230050, 8.529513714199935388900375216623, 9.570850536528072839705758819793, 10.18166894925267983021659200493, 10.71802248997556069743590768513, 11.66876266699699984465493727952, 11.92843380880703408712681539674, 12.96574043565923018826779476430, 13.15723379959748243640876161274, 14.03829554572186610771548305855, 14.18964599311887806872946724336, 15.31086366215355683397844908499, 15.39860978254693558799803182116, 16.04425621665513637432335881101