L(s) = 1 | − 152·2-s − 8.64e5·4-s − 3.90e6·5-s − 7.36e5·7-s + 1.86e8·8-s + 5.93e8·10-s − 5.36e9·11-s + 5.17e10·13-s + 1.11e8·14-s + 4.75e11·16-s + 2.50e11·17-s − 1.11e12·19-s + 3.37e12·20-s + 8.16e11·22-s + 5.92e12·23-s + 1.14e13·25-s − 7.86e12·26-s + 6.36e11·28-s + 1.41e14·29-s + 3.75e13·31-s − 1.27e14·32-s − 3.80e13·34-s + 2.87e12·35-s − 1.36e15·37-s + 1.69e14·38-s − 7.28e14·40-s + 4.17e15·41-s + ⋯ |
L(s) = 1 | − 0.209·2-s − 1.64·4-s − 0.894·5-s − 0.00689·7-s + 0.491·8-s + 0.187·10-s − 0.686·11-s + 1.35·13-s + 0.00144·14-s + 1.72·16-s + 0.511·17-s − 0.791·19-s + 1.47·20-s + 0.144·22-s + 0.686·23-s + 3/5·25-s − 0.283·26-s + 0.0113·28-s + 1.80·29-s + 0.254·31-s − 0.638·32-s − 0.107·34-s + 0.00616·35-s − 1.73·37-s + 0.166·38-s − 0.439·40-s + 1.99·41-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)2L(s)Λ(20−s)
Λ(s)=(=(2025s/2ΓC(s+19/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2025
= 34⋅52
|
Sign: |
1
|
Analytic conductor: |
10602.3 |
Root analytic conductor: |
10.1472 |
Motivic weight: |
19 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2025, ( :19/2,19/2), 1)
|
Particular Values
L(10) |
= |
0 |
L(21) |
= |
0 |
L(221) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+p9T)2 |
good | 2 | D4 | 1+19p3T+6931p7T2+19p22T3+p38T4 |
| 7 | D4 | 1+15024p2T+288871244163854p2T2+15024p21T3+p38T4 |
| 11 | D4 | 1+5369697128T+12⋯34T2+5369697128p19T3+p38T4 |
| 13 | D4 | 1−51722759612T+17⋯22pT2−51722759612p19T3+p38T4 |
| 17 | D4 | 1−14719974956pT+11⋯38p2T2−14719974956p20T3+p38T4 |
| 19 | D4 | 1+1113139984504T+13⋯38T2+1113139984504p19T3+p38T4 |
| 23 | D4 | 1−5929365574992T+81⋯54T2−5929365574992p19T3+p38T4 |
| 29 | D4 | 1−141119811247028T+12⋯38T2−141119811247028p19T3+p38T4 |
| 31 | D4 | 1−37508751850032T+13⋯42T2−37508751850032p19T3+p38T4 |
| 37 | D4 | 1+1368048785415476T+16⋯66T2+1368048785415476p19T3+p38T4 |
| 41 | D4 | 1−4174938760306988T+12⋯22T2−4174938760306988p19T3+p38T4 |
| 43 | D4 | 1+7080534797769640T+30⋯90T2+7080534797769640p19T3+p38T4 |
| 47 | D4 | 1−239738716958080T+14⋯90T2−239738716958080p19T3+p38T4 |
| 53 | D4 | 1−29662427886344452T+12⋯74T2−29662427886344452p19T3+p38T4 |
| 59 | D4 | 1+55456595574036584T+81⋯58T2+55456595574036584p19T3+p38T4 |
| 61 | D4 | 1−98673648121778540T+14⋯78T2−98673648121778540p19T3+p38T4 |
| 67 | D4 | 1−546332988026030088T+16⋯42T2−546332988026030088p19T3+p38T4 |
| 71 | D4 | 1+385389801423355024T+32⋯06T2+385389801423355024p19T3+p38T4 |
| 73 | D4 | 1−117641357804062868T+50⋯54T2−117641357804062868p19T3+p38T4 |
| 79 | D4 | 1+1761854290669138800T+30⋯38T2+1761854290669138800p19T3+p38T4 |
| 83 | D4 | 1−515530924759284216T+49⋯62T2−515530924759284216p19T3+p38T4 |
| 89 | D4 | 1−5056356550608812364T+28⋯38T2−5056356550608812364p19T3+p38T4 |
| 97 | D4 | 1+16093051291454986172T+17⋯62T2+16093051291454986172p19T3+p38T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.56662021165057240485234145258, −11.02135127925894583999189653692, −10.25046141029787806804140650818, −10.07068893461508170185778540439, −9.036468496301893248669173046555, −8.690722325514147244275830722894, −8.203806255068005084445054174470, −7.896428329086555391936976627449, −6.89055267503916909272829921405, −6.31444399817776958429544525330, −5.29768178258710883598462558533, −5.01505529164607105149681508357, −4.28160973966170914792904349431, −3.77979904861757449131981938256, −3.28175328123079863031649375441, −2.48107116695375572300846622369, −1.16516040349483337034815224045, −1.07484784366982290825541638204, 0, 0,
1.07484784366982290825541638204, 1.16516040349483337034815224045, 2.48107116695375572300846622369, 3.28175328123079863031649375441, 3.77979904861757449131981938256, 4.28160973966170914792904349431, 5.01505529164607105149681508357, 5.29768178258710883598462558533, 6.31444399817776958429544525330, 6.89055267503916909272829921405, 7.896428329086555391936976627449, 8.203806255068005084445054174470, 8.690722325514147244275830722894, 9.036468496301893248669173046555, 10.07068893461508170185778540439, 10.25046141029787806804140650818, 11.02135127925894583999189653692, 11.56662021165057240485234145258