Dirichlet series
L(s) = 1 | − 152·2-s − 8.64e5·4-s − 3.90e6·5-s − 7.36e5·7-s + 1.86e8·8-s + 5.93e8·10-s − 5.36e9·11-s + 5.17e10·13-s + 1.11e8·14-s + 4.75e11·16-s + 2.50e11·17-s − 1.11e12·19-s + 3.37e12·20-s + 8.16e11·22-s + 5.92e12·23-s + 1.14e13·25-s − 7.86e12·26-s + 6.36e11·28-s + 1.41e14·29-s + 3.75e13·31-s − 1.27e14·32-s − 3.80e13·34-s + 2.87e12·35-s − 1.36e15·37-s + 1.69e14·38-s − 7.28e14·40-s + 4.17e15·41-s + ⋯ |
L(s) = 1 | − 0.209·2-s − 1.64·4-s − 0.894·5-s − 0.00689·7-s + 0.491·8-s + 0.187·10-s − 0.686·11-s + 1.35·13-s + 0.00144·14-s + 1.72·16-s + 0.511·17-s − 0.791·19-s + 1.47·20-s + 0.144·22-s + 0.686·23-s + 3/5·25-s − 0.283·26-s + 0.0113·28-s + 1.80·29-s + 0.254·31-s − 0.638·32-s − 0.107·34-s + 0.00616·35-s − 1.73·37-s + 0.166·38-s − 0.439·40-s + 1.99·41-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(2025\) = \(3^{4} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(10602.3\) |
Root analytic conductor: | \(10.1472\) |
Motivic weight: | \(19\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 2025,\ (\ :19/2, 19/2),\ 1)\) |
Particular Values
\(L(10)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{21}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 3 | \( 1 \) | |
5 | $C_1$ | \( ( 1 + p^{9} T )^{2} \) | |
good | 2 | $D_{4}$ | \( 1 + 19 p^{3} T + 6931 p^{7} T^{2} + 19 p^{22} T^{3} + p^{38} T^{4} \) |
7 | $D_{4}$ | \( 1 + 15024 p^{2} T + 288871244163854 p^{2} T^{2} + 15024 p^{21} T^{3} + p^{38} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 5369697128 T + \)\(12\!\cdots\!34\)\( T^{2} + 5369697128 p^{19} T^{3} + p^{38} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 51722759612 T + \)\(17\!\cdots\!22\)\( p T^{2} - 51722759612 p^{19} T^{3} + p^{38} T^{4} \) | |
17 | $D_{4}$ | \( 1 - 14719974956 p T + \)\(11\!\cdots\!38\)\( p^{2} T^{2} - 14719974956 p^{20} T^{3} + p^{38} T^{4} \) | |
19 | $D_{4}$ | \( 1 + 1113139984504 T + \)\(13\!\cdots\!38\)\( T^{2} + 1113139984504 p^{19} T^{3} + p^{38} T^{4} \) | |
23 | $D_{4}$ | \( 1 - 5929365574992 T + \)\(81\!\cdots\!54\)\( T^{2} - 5929365574992 p^{19} T^{3} + p^{38} T^{4} \) | |
29 | $D_{4}$ | \( 1 - 141119811247028 T + \)\(12\!\cdots\!38\)\( T^{2} - 141119811247028 p^{19} T^{3} + p^{38} T^{4} \) | |
31 | $D_{4}$ | \( 1 - 37508751850032 T + \)\(13\!\cdots\!42\)\( T^{2} - 37508751850032 p^{19} T^{3} + p^{38} T^{4} \) | |
37 | $D_{4}$ | \( 1 + 1368048785415476 T + \)\(16\!\cdots\!66\)\( T^{2} + 1368048785415476 p^{19} T^{3} + p^{38} T^{4} \) | |
41 | $D_{4}$ | \( 1 - 4174938760306988 T + \)\(12\!\cdots\!22\)\( T^{2} - 4174938760306988 p^{19} T^{3} + p^{38} T^{4} \) | |
43 | $D_{4}$ | \( 1 + 7080534797769640 T + \)\(30\!\cdots\!90\)\( T^{2} + 7080534797769640 p^{19} T^{3} + p^{38} T^{4} \) | |
47 | $D_{4}$ | \( 1 - 239738716958080 T + \)\(14\!\cdots\!90\)\( T^{2} - 239738716958080 p^{19} T^{3} + p^{38} T^{4} \) | |
53 | $D_{4}$ | \( 1 - 29662427886344452 T + \)\(12\!\cdots\!74\)\( T^{2} - 29662427886344452 p^{19} T^{3} + p^{38} T^{4} \) | |
59 | $D_{4}$ | \( 1 + 55456595574036584 T + \)\(81\!\cdots\!58\)\( T^{2} + 55456595574036584 p^{19} T^{3} + p^{38} T^{4} \) | |
61 | $D_{4}$ | \( 1 - 98673648121778540 T + \)\(14\!\cdots\!78\)\( T^{2} - 98673648121778540 p^{19} T^{3} + p^{38} T^{4} \) | |
67 | $D_{4}$ | \( 1 - 546332988026030088 T + \)\(16\!\cdots\!42\)\( T^{2} - 546332988026030088 p^{19} T^{3} + p^{38} T^{4} \) | |
71 | $D_{4}$ | \( 1 + 385389801423355024 T + \)\(32\!\cdots\!06\)\( T^{2} + 385389801423355024 p^{19} T^{3} + p^{38} T^{4} \) | |
73 | $D_{4}$ | \( 1 - 117641357804062868 T + \)\(50\!\cdots\!54\)\( T^{2} - 117641357804062868 p^{19} T^{3} + p^{38} T^{4} \) | |
79 | $D_{4}$ | \( 1 + 1761854290669138800 T + \)\(30\!\cdots\!38\)\( T^{2} + 1761854290669138800 p^{19} T^{3} + p^{38} T^{4} \) | |
83 | $D_{4}$ | \( 1 - 515530924759284216 T + \)\(49\!\cdots\!62\)\( T^{2} - 515530924759284216 p^{19} T^{3} + p^{38} T^{4} \) | |
89 | $D_{4}$ | \( 1 - 5056356550608812364 T + \)\(28\!\cdots\!38\)\( T^{2} - 5056356550608812364 p^{19} T^{3} + p^{38} T^{4} \) | |
97 | $D_{4}$ | \( 1 + 16093051291454986172 T + \)\(17\!\cdots\!62\)\( T^{2} + 16093051291454986172 p^{19} T^{3} + p^{38} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−11.56662021165057240485234145258, −11.02135127925894583999189653692, −10.25046141029787806804140650818, −10.07068893461508170185778540439, −9.036468496301893248669173046555, −8.690722325514147244275830722894, −8.203806255068005084445054174470, −7.896428329086555391936976627449, −6.89055267503916909272829921405, −6.31444399817776958429544525330, −5.29768178258710883598462558533, −5.01505529164607105149681508357, −4.28160973966170914792904349431, −3.77979904861757449131981938256, −3.28175328123079863031649375441, −2.48107116695375572300846622369, −1.16516040349483337034815224045, −1.07484784366982290825541638204, 0, 0, 1.07484784366982290825541638204, 1.16516040349483337034815224045, 2.48107116695375572300846622369, 3.28175328123079863031649375441, 3.77979904861757449131981938256, 4.28160973966170914792904349431, 5.01505529164607105149681508357, 5.29768178258710883598462558533, 6.31444399817776958429544525330, 6.89055267503916909272829921405, 7.896428329086555391936976627449, 8.203806255068005084445054174470, 8.690722325514147244275830722894, 9.036468496301893248669173046555, 10.07068893461508170185778540439, 10.25046141029787806804140650818, 11.02135127925894583999189653692, 11.56662021165057240485234145258