L(s) = 1 | − 4·4-s − 84·11-s + 16·16-s + 230·19-s − 420·29-s − 386·31-s − 24·41-s + 336·44-s + 685·49-s + 1.38e3·59-s − 1.46e3·61-s − 64·64-s + 456·71-s − 920·76-s + 320·79-s − 480·89-s − 1.82e3·101-s + 3.47e3·109-s + 1.68e3·116-s + 2.63e3·121-s + 1.54e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 2.30·11-s + 1/4·16-s + 2.77·19-s − 2.68·29-s − 2.23·31-s − 0.0914·41-s + 1.15·44-s + 1.99·49-s + 3.04·59-s − 3.07·61-s − 1/8·64-s + 0.762·71-s − 1.38·76-s + 0.455·79-s − 0.571·89-s − 1.79·101-s + 3.04·109-s + 1.34·116-s + 1.97·121-s + 1.11·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯ |
Λ(s)=(=(202500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(202500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
202500
= 22⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
704.948 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 202500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.6931667952 |
L(21) |
≈ |
0.6931667952 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p2T2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1−685T2+p6T4 |
| 11 | C2 | (1+42T+p3T2)2 |
| 13 | C22 | 1+95T2+p6T4 |
| 17 | C22 | 1−6910T2+p6T4 |
| 19 | C2 | (1−115T+p3T2)2 |
| 23 | C22 | 1+1910T2+p6T4 |
| 29 | C2 | (1+210T+p3T2)2 |
| 31 | C2 | (1+193T+p3T2)2 |
| 37 | C22 | 1−19510T2+p6T4 |
| 41 | C2 | (1+12T+p3T2)2 |
| 43 | C22 | 1−89845T2+p6T4 |
| 47 | C22 | 1−36250T2+p6T4 |
| 53 | C22 | 1−260890T2+p6T4 |
| 59 | C2 | (1−690T+p3T2)2 |
| 61 | C2 | (1+733T+p3T2)2 |
| 67 | C22 | 1−512125T2+p6T4 |
| 71 | C2 | (1−228T+p3T2)2 |
| 73 | C22 | 1+101810T2+p6T4 |
| 79 | C2 | (1−160T+p3T2)2 |
| 83 | C22 | 1−930130T2+p6T4 |
| 89 | C2 | (1+240T+p3T2)2 |
| 97 | C22 | 1−1564225T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83873681475319718413332433348, −10.42358364976021129169946794179, −10.04631242273619391487746896641, −9.402775764559550739188966706582, −9.276509670919285682082372819313, −8.739591927397558823403244219767, −8.004239565543575578434790469912, −7.52123912447999566358368013415, −7.48998783759318748165935589343, −7.03886836608338327275433017618, −5.72425587523346107784076344787, −5.71360486807984569434128470588, −5.20584491168773341484575028387, −4.93138856214640589143034796965, −3.73581182558786197460205492013, −3.65225842048490600129525126996, −2.78991282878349325069165891270, −2.20996701283792806053974829948, −1.28978331279074381337272596413, −0.28117832935911331330552939217,
0.28117832935911331330552939217, 1.28978331279074381337272596413, 2.20996701283792806053974829948, 2.78991282878349325069165891270, 3.65225842048490600129525126996, 3.73581182558786197460205492013, 4.93138856214640589143034796965, 5.20584491168773341484575028387, 5.71360486807984569434128470588, 5.72425587523346107784076344787, 7.03886836608338327275433017618, 7.48998783759318748165935589343, 7.52123912447999566358368013415, 8.004239565543575578434790469912, 8.739591927397558823403244219767, 9.276509670919285682082372819313, 9.402775764559550739188966706582, 10.04631242273619391487746896641, 10.42358364976021129169946794179, 10.83873681475319718413332433348