L(s) = 1 | + 2-s − 4-s + 7-s − 3·8-s + 14-s − 16-s − 8·19-s − 6·25-s − 28-s + 4·29-s + 5·32-s + 12·37-s − 8·38-s + 49-s − 6·50-s − 12·53-s − 3·56-s + 4·58-s + 24·59-s + 7·64-s + 12·74-s + 8·76-s − 24·83-s + 98-s + 6·100-s − 16·103-s − 12·106-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s + 0.267·14-s − 1/4·16-s − 1.83·19-s − 6/5·25-s − 0.188·28-s + 0.742·29-s + 0.883·32-s + 1.97·37-s − 1.29·38-s + 1/7·49-s − 0.848·50-s − 1.64·53-s − 0.400·56-s + 0.525·58-s + 3.12·59-s + 7/8·64-s + 1.39·74-s + 0.917·76-s − 2.63·83-s + 0.101·98-s + 3/5·100-s − 1.57·103-s − 1.16·106-s + ⋯ |
Λ(s)=(=(444528s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(444528s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
444528
= 24⋅34⋅73
|
Sign: |
−1
|
Analytic conductor: |
28.3434 |
Root analytic conductor: |
2.30734 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 444528, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | | 1 |
| 7 | C1 | 1−T |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.351153010775658504468507691128, −8.123916451859490481483222873179, −7.45452630662509700459332399892, −6.81422856027217448872168795499, −6.43539728173776997986575871832, −5.76945209288606009941542010236, −5.73267711633132091527857634664, −4.75834670654208540745088589071, −4.61914309368534933978095799917, −3.94328917656394473634657471263, −3.71279869000131289976682575519, −2.64839746138688614832708523229, −2.38203049551357769485459868076, −1.27003349896142462152543818564, 0,
1.27003349896142462152543818564, 2.38203049551357769485459868076, 2.64839746138688614832708523229, 3.71279869000131289976682575519, 3.94328917656394473634657471263, 4.61914309368534933978095799917, 4.75834670654208540745088589071, 5.73267711633132091527857634664, 5.76945209288606009941542010236, 6.43539728173776997986575871832, 6.81422856027217448872168795499, 7.45452630662509700459332399892, 8.123916451859490481483222873179, 8.351153010775658504468507691128