Properties

Label 4-444528-1.1-c1e2-0-20
Degree $4$
Conductor $444528$
Sign $-1$
Analytic cond. $28.3434$
Root an. cond. $2.30734$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 7-s − 3·8-s + 14-s − 16-s − 8·19-s − 6·25-s − 28-s + 4·29-s + 5·32-s + 12·37-s − 8·38-s + 49-s − 6·50-s − 12·53-s − 3·56-s + 4·58-s + 24·59-s + 7·64-s + 12·74-s + 8·76-s − 24·83-s + 98-s + 6·100-s − 16·103-s − 12·106-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s + 0.267·14-s − 1/4·16-s − 1.83·19-s − 6/5·25-s − 0.188·28-s + 0.742·29-s + 0.883·32-s + 1.97·37-s − 1.29·38-s + 1/7·49-s − 0.848·50-s − 1.64·53-s − 0.400·56-s + 0.525·58-s + 3.12·59-s + 7/8·64-s + 1.39·74-s + 0.917·76-s − 2.63·83-s + 0.101·98-s + 3/5·100-s − 1.57·103-s − 1.16·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 444528 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 444528 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(444528\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(28.3434\)
Root analytic conductor: \(2.30734\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 444528,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3 \( 1 \)
7$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.351153010775658504468507691128, −8.123916451859490481483222873179, −7.45452630662509700459332399892, −6.81422856027217448872168795499, −6.43539728173776997986575871832, −5.76945209288606009941542010236, −5.73267711633132091527857634664, −4.75834670654208540745088589071, −4.61914309368534933978095799917, −3.94328917656394473634657471263, −3.71279869000131289976682575519, −2.64839746138688614832708523229, −2.38203049551357769485459868076, −1.27003349896142462152543818564, 0, 1.27003349896142462152543818564, 2.38203049551357769485459868076, 2.64839746138688614832708523229, 3.71279869000131289976682575519, 3.94328917656394473634657471263, 4.61914309368534933978095799917, 4.75834670654208540745088589071, 5.73267711633132091527857634664, 5.76945209288606009941542010236, 6.43539728173776997986575871832, 6.81422856027217448872168795499, 7.45452630662509700459332399892, 8.123916451859490481483222873179, 8.351153010775658504468507691128

Graph of the $Z$-function along the critical line