L(s) = 1 | + 2-s + 4-s − 7-s + 8-s + 5·9-s − 14-s + 16-s + 3·17-s + 5·18-s − 3·23-s − 2·25-s − 28-s − 6·31-s + 32-s + 3·34-s + 5·36-s + 9·41-s − 3·46-s − 15·47-s + 49-s − 2·50-s − 56-s − 6·62-s − 5·63-s + 64-s + 3·68-s + 15·71-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 5/3·9-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 1.17·18-s − 0.625·23-s − 2/5·25-s − 0.188·28-s − 1.07·31-s + 0.176·32-s + 0.514·34-s + 5/6·36-s + 1.40·41-s − 0.442·46-s − 2.18·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s − 0.762·62-s − 0.629·63-s + 1/8·64-s + 0.363·68-s + 1.78·71-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.213605989 |
L(21) |
≈ |
2.213605989 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 7 | C1 | 1+T |
good | 3 | C22 | 1−5T2+p2T4 |
| 5 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1+20T2+p2T4 |
| 17 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−3T+pT2)(1+6T+pT2) |
| 29 | C22 | 1+43T2+p2T4 |
| 31 | C2×C2 | (1+T+pT2)(1+5T+pT2) |
| 37 | C22 | 1−5T2+p2T4 |
| 41 | C2×C2 | (1−9T+pT2)(1+pT2) |
| 43 | C22 | 1+34T2+p2T4 |
| 47 | C2×C2 | (1+3T+pT2)(1+12T+pT2) |
| 53 | C22 | 1+85T2+p2T4 |
| 59 | C22 | 1+23T2+p2T4 |
| 61 | C22 | 1−40T2+p2T4 |
| 67 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 71 | C2×C2 | (1−9T+pT2)(1−6T+pT2) |
| 73 | C2×C2 | (1−4T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1−10T+pT2)(1−T+pT2) |
| 83 | C22 | 1+5T2+p2T4 |
| 89 | C2×C2 | (1+3T+pT2)(1+12T+pT2) |
| 97 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05678375381477042318874611224, −9.756948225725246098638511465202, −9.502508101509796184785562727000, −8.572471043036661544792716627202, −7.959398509703870639269961294849, −7.40680873284187474787785819703, −7.08975345681600839738665962505, −6.35386202430917741466320291891, −5.93928509818591661972668925621, −5.13656851188741939169424055778, −4.60634381509827538369531600859, −3.84629395034157933487320961776, −3.48844498554738898579609102006, −2.34612635281934047519280732349, −1.42882639006212863066694207280,
1.42882639006212863066694207280, 2.34612635281934047519280732349, 3.48844498554738898579609102006, 3.84629395034157933487320961776, 4.60634381509827538369531600859, 5.13656851188741939169424055778, 5.93928509818591661972668925621, 6.35386202430917741466320291891, 7.08975345681600839738665962505, 7.40680873284187474787785819703, 7.959398509703870639269961294849, 8.572471043036661544792716627202, 9.502508101509796184785562727000, 9.756948225725246098638511465202, 10.05678375381477042318874611224