Properties

Label 4-43904-1.1-c1e2-0-5
Degree $4$
Conductor $43904$
Sign $1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 2·9-s − 14-s + 16-s + 10·17-s − 2·18-s + 4·23-s − 2·25-s − 28-s + 8·31-s + 32-s + 10·34-s − 2·36-s + 2·41-s + 4·46-s − 8·47-s + 49-s − 2·50-s − 56-s + 8·62-s + 2·63-s + 64-s + 10·68-s − 20·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.267·14-s + 1/4·16-s + 2.42·17-s − 0.471·18-s + 0.834·23-s − 2/5·25-s − 0.188·28-s + 1.43·31-s + 0.176·32-s + 1.71·34-s − 1/3·36-s + 0.312·41-s + 0.589·46-s − 1.16·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s + 1.01·62-s + 0.251·63-s + 1/8·64-s + 1.21·68-s − 2.37·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008628703\)
\(L(\frac12)\) \(\approx\) \(2.008628703\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
7$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 16 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26198625768805273878719158597, −9.807283911451784848867871077047, −9.233870777277990810646909989035, −8.626454361062853678938537989862, −7.87947203505069177916060814553, −7.72017961903121285224118371713, −6.93295761301336712015981974235, −6.28456104405352899088791784904, −5.84236365237513916779554422457, −5.27743924328440857639324718167, −4.72166922153586628950292773141, −3.80670019043265087333146656334, −3.17442428449498352846146247269, −2.69616292609918723606429253208, −1.27833369925900360338012527167, 1.27833369925900360338012527167, 2.69616292609918723606429253208, 3.17442428449498352846146247269, 3.80670019043265087333146656334, 4.72166922153586628950292773141, 5.27743924328440857639324718167, 5.84236365237513916779554422457, 6.28456104405352899088791784904, 6.93295761301336712015981974235, 7.72017961903121285224118371713, 7.87947203505069177916060814553, 8.626454361062853678938537989862, 9.233870777277990810646909989035, 9.807283911451784848867871077047, 10.26198625768805273878719158597

Graph of the $Z$-function along the critical line