Properties

Label 4-43904-1.1-c1e2-0-5
Degree 44
Conductor 4390443904
Sign 11
Analytic cond. 2.799352.79935
Root an. cond. 1.293491.29349
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 2·9-s − 14-s + 16-s + 10·17-s − 2·18-s + 4·23-s − 2·25-s − 28-s + 8·31-s + 32-s + 10·34-s − 2·36-s + 2·41-s + 4·46-s − 8·47-s + 49-s − 2·50-s − 56-s + 8·62-s + 2·63-s + 64-s + 10·68-s − 20·71-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.267·14-s + 1/4·16-s + 2.42·17-s − 0.471·18-s + 0.834·23-s − 2/5·25-s − 0.188·28-s + 1.43·31-s + 0.176·32-s + 1.71·34-s − 1/3·36-s + 0.312·41-s + 0.589·46-s − 1.16·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s + 1.01·62-s + 0.251·63-s + 1/8·64-s + 1.21·68-s − 2.37·71-s + ⋯

Functional equation

Λ(s)=(43904s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(43904s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 4390443904    =    27732^{7} \cdot 7^{3}
Sign: 11
Analytic conductor: 2.799352.79935
Root analytic conductor: 1.293491.29349
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 43904, ( :1/2,1/2), 1)(4,\ 43904,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.0086287032.008628703
L(12)L(\frac12) \approx 2.0086287032.008628703
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 1T 1 - T
7C1C_1 1+T 1 + T
good3C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
5C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
11C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
13C22C_2^2 1+6T2+p2T4 1 + 6 T^{2} + p^{2} T^{4}
17C2C_2×\timesC2C_2 (16T+pT2)(14T+pT2) ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} )
19C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
23C2C_2×\timesC2C_2 (18T+pT2)(1+4T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} )
29C22C_2^2 134T2+p2T4 1 - 34 T^{2} + p^{2} T^{4}
31C2C_2×\timesC2C_2 (16T+pT2)(12T+pT2) ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} )
37C22C_2^2 1+30T2+p2T4 1 + 30 T^{2} + p^{2} T^{4}
41C2C_2×\timesC2C_2 (12T+pT2)(1+pT2) ( 1 - 2 T + p T^{2} )( 1 + p T^{2} )
43C22C_2^2 1+34T2+p2T4 1 + 34 T^{2} + p^{2} T^{4}
47C2C_2×\timesC2C_2 (12T+pT2)(1+10T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} )
53C22C_2^2 1+22T2+p2T4 1 + 22 T^{2} + p^{2} T^{4}
59C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
61C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
67C22C_2^2 1+6T2+p2T4 1 + 6 T^{2} + p^{2} T^{4}
71C2C_2×\timesC2C_2 (1+8T+pT2)(1+12T+pT2) ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} )
73C2C_2×\timesC2C_2 (14T+pT2)(1+10T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} )
79C2C_2×\timesC2C_2 (18T+pT2)(1+4T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} )
83C22C_2^2 186T2+p2T4 1 - 86 T^{2} + p^{2} T^{4}
89C2C_2×\timesC2C_2 (118T+pT2)(116T+pT2) ( 1 - 18 T + p T^{2} )( 1 - 16 T + p T^{2} )
97C2C_2×\timesC2C_2 (114T+pT2)(1+12T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 12 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.26198625768805273878719158597, −9.807283911451784848867871077047, −9.233870777277990810646909989035, −8.626454361062853678938537989862, −7.87947203505069177916060814553, −7.72017961903121285224118371713, −6.93295761301336712015981974235, −6.28456104405352899088791784904, −5.84236365237513916779554422457, −5.27743924328440857639324718167, −4.72166922153586628950292773141, −3.80670019043265087333146656334, −3.17442428449498352846146247269, −2.69616292609918723606429253208, −1.27833369925900360338012527167, 1.27833369925900360338012527167, 2.69616292609918723606429253208, 3.17442428449498352846146247269, 3.80670019043265087333146656334, 4.72166922153586628950292773141, 5.27743924328440857639324718167, 5.84236365237513916779554422457, 6.28456104405352899088791784904, 6.93295761301336712015981974235, 7.72017961903121285224118371713, 7.87947203505069177916060814553, 8.626454361062853678938537989862, 9.233870777277990810646909989035, 9.807283911451784848867871077047, 10.26198625768805273878719158597

Graph of the ZZ-function along the critical line