Properties

Label 4-43904-1.1-c1e2-0-3
Degree $4$
Conductor $43904$
Sign $1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 2·9-s − 14-s + 16-s − 2·17-s − 2·18-s + 4·23-s + 2·25-s + 28-s + 4·31-s − 32-s + 2·34-s + 2·36-s − 2·41-s − 4·46-s + 12·47-s + 49-s − 2·50-s − 56-s − 4·62-s + 2·63-s + 64-s − 2·68-s + 20·71-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 2/3·9-s − 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.471·18-s + 0.834·23-s + 2/5·25-s + 0.188·28-s + 0.718·31-s − 0.176·32-s + 0.342·34-s + 1/3·36-s − 0.312·41-s − 0.589·46-s + 1.75·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s − 0.508·62-s + 0.251·63-s + 1/8·64-s − 0.242·68-s + 2.37·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.066421746\)
\(L(\frac12)\) \(\approx\) \(1.066421746\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_1$ \( 1 - T \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 12 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19274505607597439649156228478, −9.677108046192235870246199356106, −9.194313781989916405496105062762, −8.528800373646140821271103303358, −8.386038696683392022429998649209, −7.39177891759976496316020420880, −7.28066803334605450056550690805, −6.60343904133397295855360218542, −6.00252687609791041703529005071, −5.25027462301996463773786138541, −4.61343572082246267383198569105, −3.96305578083704870704442222086, −3.00325091538984583711994775428, −2.18055419937459732379532815042, −1.10715236233253586523024540681, 1.10715236233253586523024540681, 2.18055419937459732379532815042, 3.00325091538984583711994775428, 3.96305578083704870704442222086, 4.61343572082246267383198569105, 5.25027462301996463773786138541, 6.00252687609791041703529005071, 6.60343904133397295855360218542, 7.28066803334605450056550690805, 7.39177891759976496316020420880, 8.386038696683392022429998649209, 8.528800373646140821271103303358, 9.194313781989916405496105062762, 9.677108046192235870246199356106, 10.19274505607597439649156228478

Graph of the $Z$-function along the critical line