L(s) = 1 | − 2-s + 4-s + 7-s − 8-s + 2·9-s − 14-s + 16-s − 2·17-s − 2·18-s + 4·23-s + 2·25-s + 28-s + 4·31-s − 32-s + 2·34-s + 2·36-s − 2·41-s − 4·46-s + 12·47-s + 49-s − 2·50-s − 56-s − 4·62-s + 2·63-s + 64-s − 2·68-s + 20·71-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 2/3·9-s − 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.471·18-s + 0.834·23-s + 2/5·25-s + 0.188·28-s + 0.718·31-s − 0.176·32-s + 0.342·34-s + 1/3·36-s − 0.312·41-s − 0.589·46-s + 1.75·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s − 0.508·62-s + 0.251·63-s + 1/8·64-s − 0.242·68-s + 2.37·71-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.066421746 |
L(21) |
≈ |
1.066421746 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1−T |
good | 3 | C22 | 1−2T2+p2T4 |
| 5 | C22 | 1−2T2+p2T4 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 29 | C22 | 1−34T2+p2T4 |
| 31 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 37 | C22 | 1+30T2+p2T4 |
| 41 | C2×C2 | (1+pT2)(1+2T+pT2) |
| 43 | C22 | 1+34T2+p2T4 |
| 47 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
| 53 | C22 | 1+22T2+p2T4 |
| 59 | C22 | 1−2T2+p2T4 |
| 61 | C22 | 1−2T2+p2T4 |
| 67 | C22 | 1+6T2+p2T4 |
| 71 | C2×C2 | (1−12T+pT2)(1−8T+pT2) |
| 73 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+86T2+p2T4 |
| 89 | C2×C2 | (1−18T+pT2)(1+16T+pT2) |
| 97 | C2×C2 | (1+12T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19274505607597439649156228478, −9.677108046192235870246199356106, −9.194313781989916405496105062762, −8.528800373646140821271103303358, −8.386038696683392022429998649209, −7.39177891759976496316020420880, −7.28066803334605450056550690805, −6.60343904133397295855360218542, −6.00252687609791041703529005071, −5.25027462301996463773786138541, −4.61343572082246267383198569105, −3.96305578083704870704442222086, −3.00325091538984583711994775428, −2.18055419937459732379532815042, −1.10715236233253586523024540681,
1.10715236233253586523024540681, 2.18055419937459732379532815042, 3.00325091538984583711994775428, 3.96305578083704870704442222086, 4.61343572082246267383198569105, 5.25027462301996463773786138541, 6.00252687609791041703529005071, 6.60343904133397295855360218542, 7.28066803334605450056550690805, 7.39177891759976496316020420880, 8.386038696683392022429998649209, 8.528800373646140821271103303358, 9.194313781989916405496105062762, 9.677108046192235870246199356106, 10.19274505607597439649156228478