L(s) = 1 | − 2-s − 4·3-s + 4-s − 2·5-s + 4·6-s + 7-s − 8-s + 6·9-s + 2·10-s − 4·11-s − 4·12-s − 10·13-s − 14-s + 8·15-s + 16-s + 2·17-s − 6·18-s − 4·19-s − 2·20-s − 4·21-s + 4·22-s − 4·23-s + 4·24-s − 6·25-s + 10·26-s + 4·27-s + 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 2.30·3-s + 1/2·4-s − 0.894·5-s + 1.63·6-s + 0.377·7-s − 0.353·8-s + 2·9-s + 0.632·10-s − 1.20·11-s − 1.15·12-s − 2.77·13-s − 0.267·14-s + 2.06·15-s + 1/4·16-s + 0.485·17-s − 1.41·18-s − 0.917·19-s − 0.447·20-s − 0.872·21-s + 0.852·22-s − 0.834·23-s + 0.816·24-s − 6/5·25-s + 1.96·26-s + 0.769·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1−T |
good | 3 | C2 | (1+2T+pT2)2 |
| 5 | C2×C2 | (1+pT2)(1+2T+pT2) |
| 11 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 13 | C2 | (1+4T+pT2)(1+6T+pT2) |
| 17 | C2×C2 | (1−6T+pT2)(1+4T+pT2) |
| 19 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1−4T+pT2) |
| 43 | C2×C2 | (1−8T+pT2)(1+12T+pT2) |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | C2×C2 | (1−8T+pT2)(1−6T+pT2) |
| 67 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C2×C2 | (1−2T+pT2)(1+pT2) |
| 79 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C2×C2 | (1+6T+pT2)(1+16T+pT2) |
| 97 | C2×C2 | (1+10T+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.4514933430, −14.9728953745, −14.6077730657, −14.2451399800, −13.1881895766, −12.6417026271, −12.3052609901, −12.1063406379, −11.4418273496, −11.2313614144, −10.9409991928, −10.2459627166, −9.76554711946, −9.63516922865, −8.37116758932, −8.01003490126, −7.57571100089, −7.08238367024, −6.45217559209, −5.59673699857, −5.57928681743, −4.69839552642, −4.43201465917, −3.00626769255, −2.08688930207, 0, 0,
2.08688930207, 3.00626769255, 4.43201465917, 4.69839552642, 5.57928681743, 5.59673699857, 6.45217559209, 7.08238367024, 7.57571100089, 8.01003490126, 8.37116758932, 9.63516922865, 9.76554711946, 10.2459627166, 10.9409991928, 11.2313614144, 11.4418273496, 12.1063406379, 12.3052609901, 12.6417026271, 13.1881895766, 14.2451399800, 14.6077730657, 14.9728953745, 15.4514933430