Properties

Label 4-43904-1.1-c1e2-0-16
Degree $4$
Conductor $43904$
Sign $1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4·3-s + 4-s − 2·5-s + 4·6-s + 7-s − 8-s + 6·9-s + 2·10-s − 4·11-s − 4·12-s − 10·13-s − 14-s + 8·15-s + 16-s + 2·17-s − 6·18-s − 4·19-s − 2·20-s − 4·21-s + 4·22-s − 4·23-s + 4·24-s − 6·25-s + 10·26-s + 4·27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 2.30·3-s + 1/2·4-s − 0.894·5-s + 1.63·6-s + 0.377·7-s − 0.353·8-s + 2·9-s + 0.632·10-s − 1.20·11-s − 1.15·12-s − 2.77·13-s − 0.267·14-s + 2.06·15-s + 1/4·16-s + 0.485·17-s − 1.41·18-s − 0.917·19-s − 0.447·20-s − 0.872·21-s + 0.852·22-s − 0.834·23-s + 0.816·24-s − 6/5·25-s + 1.96·26-s + 0.769·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.4514933430, −14.9728953745, −14.6077730657, −14.2451399800, −13.1881895766, −12.6417026271, −12.3052609901, −12.1063406379, −11.4418273496, −11.2313614144, −10.9409991928, −10.2459627166, −9.76554711946, −9.63516922865, −8.37116758932, −8.01003490126, −7.57571100089, −7.08238367024, −6.45217559209, −5.59673699857, −5.57928681743, −4.69839552642, −4.43201465917, −3.00626769255, −2.08688930207, 0, 0, 2.08688930207, 3.00626769255, 4.43201465917, 4.69839552642, 5.57928681743, 5.59673699857, 6.45217559209, 7.08238367024, 7.57571100089, 8.01003490126, 8.37116758932, 9.63516922865, 9.76554711946, 10.2459627166, 10.9409991928, 11.2313614144, 11.4418273496, 12.1063406379, 12.3052609901, 12.6417026271, 13.1881895766, 14.2451399800, 14.6077730657, 14.9728953745, 15.4514933430

Graph of the $Z$-function along the critical line