Properties

Label 4-43904-1.1-c1e2-0-11
Degree $4$
Conductor $43904$
Sign $1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 7-s + 6·9-s − 4·19-s + 4·21-s + 6·25-s − 4·27-s + 4·29-s + 8·31-s − 12·37-s − 8·47-s + 49-s − 20·53-s − 16·57-s + 12·59-s + 6·63-s + 24·75-s − 37·81-s + 12·83-s + 16·87-s + 32·93-s − 24·103-s + 20·109-s − 48·111-s + 12·113-s − 22·121-s + 127-s + ⋯
L(s)  = 1  + 2.30·3-s + 0.377·7-s + 2·9-s − 0.917·19-s + 0.872·21-s + 6/5·25-s − 0.769·27-s + 0.742·29-s + 1.43·31-s − 1.97·37-s − 1.16·47-s + 1/7·49-s − 2.74·53-s − 2.11·57-s + 1.56·59-s + 0.755·63-s + 2.77·75-s − 4.11·81-s + 1.31·83-s + 1.71·87-s + 3.31·93-s − 2.36·103-s + 1.91·109-s − 4.55·111-s + 1.12·113-s − 2·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.717535060\)
\(L(\frac12)\) \(\approx\) \(2.717535060\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.835763078329112662938551691511, −9.676028605922657643630885041741, −8.928329697232844766585907221767, −8.589598276995096865608741769842, −8.188057214509100026281306554311, −8.037894346653340821155380595819, −7.14438434722230698367292292955, −6.69299348503088401254902880103, −5.96146004102990052123544748972, −4.99083605129769608898331014735, −4.50185552371175935345657331179, −3.56791835941750047835108384805, −3.14137792992390816749783057891, −2.48337724162238959661867349800, −1.73163501201493931998851829334, 1.73163501201493931998851829334, 2.48337724162238959661867349800, 3.14137792992390816749783057891, 3.56791835941750047835108384805, 4.50185552371175935345657331179, 4.99083605129769608898331014735, 5.96146004102990052123544748972, 6.69299348503088401254902880103, 7.14438434722230698367292292955, 8.037894346653340821155380595819, 8.188057214509100026281306554311, 8.589598276995096865608741769842, 8.928329697232844766585907221767, 9.676028605922657643630885041741, 9.835763078329112662938551691511

Graph of the $Z$-function along the critical line