L(s) = 1 | + 4·3-s + 7-s + 6·9-s − 4·19-s + 4·21-s + 6·25-s − 4·27-s + 4·29-s + 8·31-s − 12·37-s − 8·47-s + 49-s − 20·53-s − 16·57-s + 12·59-s + 6·63-s + 24·75-s − 37·81-s + 12·83-s + 16·87-s + 32·93-s − 24·103-s + 20·109-s − 48·111-s + 12·113-s − 22·121-s + 127-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 0.377·7-s + 2·9-s − 0.917·19-s + 0.872·21-s + 6/5·25-s − 0.769·27-s + 0.742·29-s + 1.43·31-s − 1.97·37-s − 1.16·47-s + 1/7·49-s − 2.74·53-s − 2.11·57-s + 1.56·59-s + 0.755·63-s + 2.77·75-s − 4.11·81-s + 1.31·83-s + 1.71·87-s + 3.31·93-s − 2.36·103-s + 1.91·109-s − 4.55·111-s + 1.12·113-s − 2·121-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.717535060 |
L(21) |
≈ |
2.717535060 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | 1−T |
good | 3 | C2 | (1−2T+pT2)2 |
| 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1−6T+pT2)2 |
| 61 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.835763078329112662938551691511, −9.676028605922657643630885041741, −8.928329697232844766585907221767, −8.589598276995096865608741769842, −8.188057214509100026281306554311, −8.037894346653340821155380595819, −7.14438434722230698367292292955, −6.69299348503088401254902880103, −5.96146004102990052123544748972, −4.99083605129769608898331014735, −4.50185552371175935345657331179, −3.56791835941750047835108384805, −3.14137792992390816749783057891, −2.48337724162238959661867349800, −1.73163501201493931998851829334,
1.73163501201493931998851829334, 2.48337724162238959661867349800, 3.14137792992390816749783057891, 3.56791835941750047835108384805, 4.50185552371175935345657331179, 4.99083605129769608898331014735, 5.96146004102990052123544748972, 6.69299348503088401254902880103, 7.14438434722230698367292292955, 8.037894346653340821155380595819, 8.188057214509100026281306554311, 8.589598276995096865608741769842, 8.928329697232844766585907221767, 9.676028605922657643630885041741, 9.835763078329112662938551691511