Properties

Label 4-43904-1.1-c1e2-0-10
Degree $4$
Conductor $43904$
Sign $-1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s + 7-s − 8-s − 2·9-s + 2·10-s + 2·13-s − 14-s + 16-s − 6·17-s + 2·18-s − 2·20-s − 8·23-s + 2·25-s − 2·26-s + 28-s − 4·29-s + 4·31-s − 32-s + 6·34-s − 2·35-s − 2·36-s + 4·37-s + 2·40-s + 2·41-s − 16·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.632·10-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.471·18-s − 0.447·20-s − 1.66·23-s + 2/5·25-s − 0.392·26-s + 0.188·28-s − 0.742·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s − 0.338·35-s − 1/3·36-s + 0.657·37-s + 0.316·40-s + 0.312·41-s − 2.43·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
13$C_4$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 14 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 46 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 16 T + 126 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 4 T - 34 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T - 14 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 8 T + 78 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 16 T + 162 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 14 T + p T^{2} ) \)
97$D_{4}$ \( 1 - 2 T - 70 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.2044887106, −14.7986331807, −14.2654895574, −13.7901197244, −13.2108905524, −12.9095825673, −11.9955195911, −11.8060432483, −11.3859674867, −11.0619071903, −10.4231508360, −10.0151603446, −9.30317318374, −8.83273717856, −8.27406452484, −8.08512942671, −7.50843087012, −6.74347751107, −6.34129777909, −5.70964625786, −4.86898551946, −4.19718886633, −3.57300806656, −2.65335980391, −1.72691978313, 0, 1.72691978313, 2.65335980391, 3.57300806656, 4.19718886633, 4.86898551946, 5.70964625786, 6.34129777909, 6.74347751107, 7.50843087012, 8.08512942671, 8.27406452484, 8.83273717856, 9.30317318374, 10.0151603446, 10.4231508360, 11.0619071903, 11.3859674867, 11.8060432483, 11.9955195911, 12.9095825673, 13.2108905524, 13.7901197244, 14.2654895574, 14.7986331807, 15.2044887106

Graph of the $Z$-function along the critical line