L(s) = 1 | − 2-s + 4-s − 2·5-s + 7-s − 8-s − 2·9-s + 2·10-s + 2·13-s − 14-s + 16-s − 6·17-s + 2·18-s − 2·20-s − 8·23-s + 2·25-s − 2·26-s + 28-s − 4·29-s + 4·31-s − 32-s + 6·34-s − 2·35-s − 2·36-s + 4·37-s + 2·40-s + 2·41-s − 16·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.632·10-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.471·18-s − 0.447·20-s − 1.66·23-s + 2/5·25-s − 0.392·26-s + 0.188·28-s − 0.742·29-s + 0.718·31-s − 0.176·32-s + 1.02·34-s − 0.338·35-s − 1/3·36-s + 0.657·37-s + 0.316·40-s + 0.312·41-s − 2.43·43-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
−1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 43904, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1−T |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1−2T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C4 | 1−2T+10T2−2pT3+p2T4 |
| 17 | D4 | 1+6T+26T2+6pT3+p2T4 |
| 19 | C22 | 1+18T2+p2T4 |
| 23 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 29 | D4 | 1+4T+14T2+4pT3+p2T4 |
| 31 | D4 | 1−4T+14T2−4pT3+p2T4 |
| 37 | D4 | 1−4T+46T2−4pT3+p2T4 |
| 41 | D4 | 1−2T+10T2−2pT3+p2T4 |
| 43 | D4 | 1+16T+126T2+16pT3+p2T4 |
| 47 | D4 | 1+4T−34T2+4pT3+p2T4 |
| 53 | C22 | 1−26T2+p2T4 |
| 59 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 61 | C2×C2 | (1−4T+pT2)(1+14T+pT2) |
| 67 | D4 | 1+4T+70T2+4pT3+p2T4 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | D4 | 1−2T−14T2−2pT3+p2T4 |
| 79 | D4 | 1+8T+78T2+8pT3+p2T4 |
| 83 | D4 | 1−16T+162T2−16pT3+p2T4 |
| 89 | C2×C2 | (1+pT2)(1+14T+pT2) |
| 97 | D4 | 1−2T−70T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.2044887106, −14.7986331807, −14.2654895574, −13.7901197244, −13.2108905524, −12.9095825673, −11.9955195911, −11.8060432483, −11.3859674867, −11.0619071903, −10.4231508360, −10.0151603446, −9.30317318374, −8.83273717856, −8.27406452484, −8.08512942671, −7.50843087012, −6.74347751107, −6.34129777909, −5.70964625786, −4.86898551946, −4.19718886633, −3.57300806656, −2.65335980391, −1.72691978313, 0,
1.72691978313, 2.65335980391, 3.57300806656, 4.19718886633, 4.86898551946, 5.70964625786, 6.34129777909, 6.74347751107, 7.50843087012, 8.08512942671, 8.27406452484, 8.83273717856, 9.30317318374, 10.0151603446, 10.4231508360, 11.0619071903, 11.3859674867, 11.8060432483, 11.9955195911, 12.9095825673, 13.2108905524, 13.7901197244, 14.2654895574, 14.7986331807, 15.2044887106