Properties

Label 4-43904-1.1-c1e2-0-1
Degree $4$
Conductor $43904$
Sign $1$
Analytic cond. $2.79935$
Root an. cond. $1.29349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 6·9-s + 16·19-s − 6·25-s + 12·29-s + 16·31-s − 4·37-s − 16·47-s + 49-s + 12·53-s + 6·63-s + 27·81-s + 16·83-s − 32·103-s − 20·109-s + 4·113-s − 6·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.377·7-s − 2·9-s + 3.67·19-s − 6/5·25-s + 2.22·29-s + 2.87·31-s − 0.657·37-s − 2.33·47-s + 1/7·49-s + 1.64·53-s + 0.755·63-s + 3·81-s + 1.75·83-s − 3.15·103-s − 1.91·109-s + 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43904\)    =    \(2^{7} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(2.79935\)
Root analytic conductor: \(1.29349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.156321458\)
\(L(\frac12)\) \(\approx\) \(1.156321458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15969982113999416146742248886, −9.502244133602489113553033388660, −9.457349313423188294666539437989, −8.459138850523211127936437645267, −8.188420417684287628984093773695, −7.80607013998257452679138271336, −6.92383462522053566355627597037, −6.42262084813563967264199691637, −5.84465028770243608573987581113, −5.22316409435338364257345412913, −4.90615311225424089857668766077, −3.69860481691342078568866024595, −2.92766858317331148516836536443, −2.79183800612725741835263061431, −0.988078077776060913977316087411, 0.988078077776060913977316087411, 2.79183800612725741835263061431, 2.92766858317331148516836536443, 3.69860481691342078568866024595, 4.90615311225424089857668766077, 5.22316409435338364257345412913, 5.84465028770243608573987581113, 6.42262084813563967264199691637, 6.92383462522053566355627597037, 7.80607013998257452679138271336, 8.188420417684287628984093773695, 8.459138850523211127936437645267, 9.457349313423188294666539437989, 9.502244133602489113553033388660, 10.15969982113999416146742248886

Graph of the $Z$-function along the critical line