L(s) = 1 | − 7-s − 6·9-s + 16·19-s − 6·25-s + 12·29-s + 16·31-s − 4·37-s − 16·47-s + 49-s + 12·53-s + 6·63-s + 27·81-s + 16·83-s − 32·103-s − 20·109-s + 4·113-s − 6·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 2·9-s + 3.67·19-s − 6/5·25-s + 2.22·29-s + 2.87·31-s − 0.657·37-s − 2.33·47-s + 1/7·49-s + 1.64·53-s + 0.755·63-s + 3·81-s + 1.75·83-s − 3.15·103-s − 1.91·109-s + 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 43904, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.156321458 |
L(21) |
≈ |
1.156321458 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | 1+T |
good | 3 | C2 | (1+pT2)2 |
| 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 83 | C2 | (1−8T+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−6T+pT2)(1+6T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15969982113999416146742248886, −9.502244133602489113553033388660, −9.457349313423188294666539437989, −8.459138850523211127936437645267, −8.188420417684287628984093773695, −7.80607013998257452679138271336, −6.92383462522053566355627597037, −6.42262084813563967264199691637, −5.84465028770243608573987581113, −5.22316409435338364257345412913, −4.90615311225424089857668766077, −3.69860481691342078568866024595, −2.92766858317331148516836536443, −2.79183800612725741835263061431, −0.988078077776060913977316087411,
0.988078077776060913977316087411, 2.79183800612725741835263061431, 2.92766858317331148516836536443, 3.69860481691342078568866024595, 4.90615311225424089857668766077, 5.22316409435338364257345412913, 5.84465028770243608573987581113, 6.42262084813563967264199691637, 6.92383462522053566355627597037, 7.80607013998257452679138271336, 8.188420417684287628984093773695, 8.459138850523211127936437645267, 9.457349313423188294666539437989, 9.502244133602489113553033388660, 10.15969982113999416146742248886