L(s) = 1 | + 4-s + 9-s − 2·13-s − 3·16-s + 2·25-s + 8·29-s + 36-s + 4·43-s + 10·49-s − 2·52-s + 12·53-s + 4·61-s − 7·64-s + 4·79-s + 81-s + 2·100-s − 24·101-s + 12·113-s + 8·116-s − 2·117-s + 121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 1/3·9-s − 0.554·13-s − 3/4·16-s + 2/5·25-s + 1.48·29-s + 1/6·36-s + 0.609·43-s + 10/7·49-s − 0.277·52-s + 1.64·53-s + 0.512·61-s − 7/8·64-s + 0.450·79-s + 1/9·81-s + 1/5·100-s − 2.38·101-s + 1.12·113-s + 0.742·116-s − 0.184·117-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/4·144-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(184041s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(184041s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
184041
= 32⋅112⋅132
|
Sign: |
1
|
Analytic conductor: |
11.7346 |
Root analytic conductor: |
1.85083 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 184041, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.854640035 |
L(21) |
≈ |
1.854640035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1×C1 | (1−T)(1+T) |
| 11 | C1×C1 | (1−T)(1+T) |
| 13 | C2 | 1+2T+pT2 |
good | 2 | C22 | 1−T2+p2T4 |
| 5 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C22 | 1−18T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1+54T2+p2T4 |
| 41 | C22 | 1+14T2+p2T4 |
| 43 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 47 | C22 | 1−18T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 67 | C22 | 1−34T2+p2T4 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2×C2 | (1−12T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+54T2+p2T4 |
| 89 | C22 | 1−138T2+p2T4 |
| 97 | C22 | 1+14T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.034675924042442143095749364854, −8.751255841935656095454046788480, −8.201720666313246234236012947159, −7.64207526479637796430779583830, −7.06106563280908413208522152193, −6.89083570242035191053138253645, −6.32264419475329643065103807654, −5.66441761296988050389009552569, −5.19940310794129448841020654032, −4.43271259079955941847260762295, −4.19246927836238336661479687820, −3.23556710348062248878122127648, −2.58345108108264936945916302095, −2.06329049460713332419606765221, −0.899003034750625609668785182244,
0.899003034750625609668785182244, 2.06329049460713332419606765221, 2.58345108108264936945916302095, 3.23556710348062248878122127648, 4.19246927836238336661479687820, 4.43271259079955941847260762295, 5.19940310794129448841020654032, 5.66441761296988050389009552569, 6.32264419475329643065103807654, 6.89083570242035191053138253645, 7.06106563280908413208522152193, 7.64207526479637796430779583830, 8.201720666313246234236012947159, 8.751255841935656095454046788480, 9.034675924042442143095749364854