L(s) = 1 | + 7·4-s − 10·9-s − 48·11-s − 15·16-s − 232·19-s − 60·29-s − 344·31-s − 70·36-s − 684·41-s − 336·44-s − 98·49-s − 504·59-s + 220·61-s − 553·64-s − 1.41e3·71-s − 1.62e3·76-s + 968·79-s − 629·81-s + 1.54e3·89-s + 480·99-s − 420·101-s + 2.37e3·109-s − 420·116-s − 934·121-s − 2.40e3·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 7/8·4-s − 0.370·9-s − 1.31·11-s − 0.234·16-s − 2.80·19-s − 0.384·29-s − 1.99·31-s − 0.324·36-s − 2.60·41-s − 1.15·44-s − 2/7·49-s − 1.11·59-s + 0.461·61-s − 1.08·64-s − 2.36·71-s − 2.45·76-s + 1.37·79-s − 0.862·81-s + 1.84·89-s + 0.487·99-s − 0.413·101-s + 2.08·109-s − 0.336·116-s − 0.701·121-s − 1.74·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(180625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(180625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
180625
= 54⋅172
|
Sign: |
1
|
Analytic conductor: |
628.796 |
Root analytic conductor: |
5.00757 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 180625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 17 | C2 | 1+p2T2 |
good | 2 | C22 | 1−7T2+p6T4 |
| 3 | C22 | 1+10T2+p6T4 |
| 7 | C22 | 1+2p2T2+p6T4 |
| 11 | C2 | (1+24T+p3T2)2 |
| 13 | C22 | 1−1030T2+p6T4 |
| 19 | C2 | (1+116T+p3T2)2 |
| 23 | C22 | 1−20734T2+p6T4 |
| 29 | C2 | (1+30T+p3T2)2 |
| 31 | C2 | (1+172T+p3T2)2 |
| 37 | C22 | 1−97942T2+p6T4 |
| 41 | C2 | (1+342T+p3T2)2 |
| 43 | C22 | 1−137110T2+p6T4 |
| 47 | C22 | 1−124702T2+p6T4 |
| 53 | C22 | 1−70p2T2+p6T4 |
| 59 | C2 | (1+252T+p3T2)2 |
| 61 | C2 | (1−110T+p3T2)2 |
| 67 | C22 | 1−367270T2+p6T4 |
| 71 | C2 | (1+708T+p3T2)2 |
| 73 | C22 | 1−646990T2+p6T4 |
| 79 | C2 | (1−484T+p3T2)2 |
| 83 | C22 | 1−572038T2+p6T4 |
| 89 | C2 | (1−774T+p3T2)2 |
| 97 | C22 | 1−1679422T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48262812718079295191751081100, −10.45003594599013903395813572461, −9.748953406935180400184091027290, −8.916466472894863703065734888805, −8.772156140594064990213604724660, −8.317040883954338335083503122259, −7.52430748825825200745536874118, −7.48714667875867588271705789486, −6.61879848170905525825960160666, −6.41697704808275461280133467235, −5.84798190277569519804114226122, −5.21524494767023274350368859995, −4.76542088483137001492988901804, −4.06550794064444127682719866466, −3.37760450585846030072698215390, −2.73931685831830878603720113640, −2.00323208346037421144177330888, −1.81424147318915866618309580227, 0, 0,
1.81424147318915866618309580227, 2.00323208346037421144177330888, 2.73931685831830878603720113640, 3.37760450585846030072698215390, 4.06550794064444127682719866466, 4.76542088483137001492988901804, 5.21524494767023274350368859995, 5.84798190277569519804114226122, 6.41697704808275461280133467235, 6.61879848170905525825960160666, 7.48714667875867588271705789486, 7.52430748825825200745536874118, 8.317040883954338335083503122259, 8.772156140594064990213604724660, 8.916466472894863703065734888805, 9.748953406935180400184091027290, 10.45003594599013903395813572461, 10.48262812718079295191751081100