Properties

Label 4-42336-1.1-c1e2-0-3
Degree $4$
Conductor $42336$
Sign $1$
Analytic cond. $2.69938$
Root an. cond. $1.28178$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 2·7-s − 8-s + 9-s + 12-s − 2·14-s + 16-s − 18-s + 10·19-s + 2·21-s − 24-s + 2·25-s + 27-s + 2·28-s − 8·31-s − 32-s + 36-s − 8·37-s − 10·38-s − 2·42-s + 48-s − 3·49-s − 2·50-s − 12·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s − 0.534·14-s + 1/4·16-s − 0.235·18-s + 2.29·19-s + 0.436·21-s − 0.204·24-s + 2/5·25-s + 0.192·27-s + 0.377·28-s − 1.43·31-s − 0.176·32-s + 1/6·36-s − 1.31·37-s − 1.62·38-s − 0.308·42-s + 0.144·48-s − 3/7·49-s − 0.282·50-s − 1.64·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(42336\)    =    \(2^{5} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2.69938\)
Root analytic conductor: \(1.28178\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 42336,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.328659576\)
\(L(\frac12)\) \(\approx\) \(1.328659576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 - T \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05672027087538034197729084707, −9.669446228193820242625181572817, −9.191843170597370710676249873197, −8.710988309948881821027132572543, −8.151975308258651318483216887612, −7.71357947029418561689741506363, −7.17775054949742134187241067553, −6.83722363424200252735152593821, −5.83930380628444089133080655376, −5.26719013957172234419382032551, −4.76207130767025177348761542541, −3.63831478244584951417136526212, −3.20883331189918105671695816383, −2.14994026496101327134244552530, −1.27768042596702657001936796215, 1.27768042596702657001936796215, 2.14994026496101327134244552530, 3.20883331189918105671695816383, 3.63831478244584951417136526212, 4.76207130767025177348761542541, 5.26719013957172234419382032551, 5.83930380628444089133080655376, 6.83722363424200252735152593821, 7.17775054949742134187241067553, 7.71357947029418561689741506363, 8.151975308258651318483216887612, 8.710988309948881821027132572543, 9.191843170597370710676249873197, 9.669446228193820242625181572817, 10.05672027087538034197729084707

Graph of the $Z$-function along the critical line