Properties

Label 4-4200e2-1.1-c1e2-0-0
Degree $4$
Conductor $17640000$
Sign $1$
Analytic cond. $1124.74$
Root an. cond. $5.79112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 4·11-s − 8·19-s − 18·29-s − 10·31-s + 2·41-s − 49-s − 10·59-s + 18·61-s − 8·71-s − 28·79-s + 81-s + 12·89-s − 4·99-s − 40·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 17·169-s + 8·171-s + ⋯
L(s)  = 1  − 1/3·9-s + 1.20·11-s − 1.83·19-s − 3.34·29-s − 1.79·31-s + 0.312·41-s − 1/7·49-s − 1.30·59-s + 2.30·61-s − 0.949·71-s − 3.15·79-s + 1/9·81-s + 1.27·89-s − 0.402·99-s − 3.83·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.30·169-s + 0.611·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17640000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17640000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1124.74\)
Root analytic conductor: \(5.79112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17640000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1805833537\)
\(L(\frac12)\) \(\approx\) \(0.1805833537\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 77 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 141 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.673439376450945520747205102697, −8.315335398409854385711632624173, −7.73755686042681509134389751216, −7.52588447013491603041007414627, −7.16720949506277819305322059337, −6.60216915659118008791952283135, −6.59293117927600950796400577837, −5.82073493205819988501089059668, −5.79668318685519340047573687303, −5.34063473122529919189993634473, −4.91312254290352212312082050450, −4.12274989867123386437061754686, −4.05618964430216416736997336134, −3.81181304629743126887099971694, −3.25096447993994385109726599201, −2.64268999502896984416793883310, −2.10641248325570228911291614073, −1.72225818579318422131643125827, −1.30887891703733151224605728958, −0.11625037179464037513676526104, 0.11625037179464037513676526104, 1.30887891703733151224605728958, 1.72225818579318422131643125827, 2.10641248325570228911291614073, 2.64268999502896984416793883310, 3.25096447993994385109726599201, 3.81181304629743126887099971694, 4.05618964430216416736997336134, 4.12274989867123386437061754686, 4.91312254290352212312082050450, 5.34063473122529919189993634473, 5.79668318685519340047573687303, 5.82073493205819988501089059668, 6.59293117927600950796400577837, 6.60216915659118008791952283135, 7.16720949506277819305322059337, 7.52588447013491603041007414627, 7.73755686042681509134389751216, 8.315335398409854385711632624173, 8.673439376450945520747205102697

Graph of the $Z$-function along the critical line