Properties

Label 4-416e2-1.1-c2e2-0-1
Degree $4$
Conductor $173056$
Sign $1$
Analytic cond. $128.486$
Root an. cond. $3.36677$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·5-s − 18·9-s + 24·13-s + 98·25-s + 80·29-s − 46·37-s − 98·41-s + 252·45-s − 180·53-s + 44·61-s − 336·65-s − 206·73-s + 243·81-s − 82·89-s + 274·97-s − 62·109-s − 448·113-s − 432·117-s − 350·125-s + 127-s + 131-s + 137-s + 139-s − 1.12e3·145-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2.79·5-s − 2·9-s + 1.84·13-s + 3.91·25-s + 2.75·29-s − 1.24·37-s − 2.39·41-s + 28/5·45-s − 3.39·53-s + 0.721·61-s − 5.16·65-s − 2.82·73-s + 3·81-s − 0.921·89-s + 2.82·97-s − 0.568·109-s − 3.96·113-s − 3.69·117-s − 2.79·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 7.72·145-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(173056\)    =    \(2^{10} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(128.486\)
Root analytic conductor: \(3.36677\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 173056,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2520632553\)
\(L(\frac12)\) \(\approx\) \(0.2520632553\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_2$ \( 1 - 24 T + p^{2} T^{2} \)
good3$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
5$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )( 1 + 8 T + p^{2} T^{2} ) \)
7$C_2^2$ \( 1 + p^{4} T^{4} \)
11$C_2^2$ \( 1 + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )( 1 + 16 T + p^{2} T^{2} ) \)
19$C_2^2$ \( 1 + p^{4} T^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 + p^{4} T^{4} \)
37$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )( 1 + 70 T + p^{2} T^{2} ) \)
41$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )( 1 + 80 T + p^{2} T^{2} ) \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
47$C_2^2$ \( 1 + p^{4} T^{4} \)
53$C_2$ \( ( 1 + 90 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{4} T^{4} \)
71$C_2^2$ \( 1 + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 96 T + p^{2} T^{2} )( 1 + 110 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 78 T + p^{2} T^{2} )( 1 + 160 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 144 T + p^{2} T^{2} )( 1 - 130 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41012445304543214122650028070, −10.98801662990072814601146941475, −10.52838748846064366779925804968, −10.08492185490885724146589830752, −8.998518068969086855493034632019, −8.697190444327680956824538648298, −8.469057703608157818500561116102, −7.956044444775796745770994872324, −7.955303076044463993183207242137, −7.04528389378919521813763069367, −6.48223321822479379400090335885, −6.22543251224299680260777824096, −5.35306127225151793049558822652, −4.79239182285770299085814992403, −4.28761243844372223322587229404, −3.43881269410762970536797088313, −3.40333079498714128439871200488, −2.84690447047710187454759625908, −1.31873714462970097180279669404, −0.23461819360420644172229273626, 0.23461819360420644172229273626, 1.31873714462970097180279669404, 2.84690447047710187454759625908, 3.40333079498714128439871200488, 3.43881269410762970536797088313, 4.28761243844372223322587229404, 4.79239182285770299085814992403, 5.35306127225151793049558822652, 6.22543251224299680260777824096, 6.48223321822479379400090335885, 7.04528389378919521813763069367, 7.955303076044463993183207242137, 7.956044444775796745770994872324, 8.469057703608157818500561116102, 8.697190444327680956824538648298, 8.998518068969086855493034632019, 10.08492185490885724146589830752, 10.52838748846064366779925804968, 10.98801662990072814601146941475, 11.41012445304543214122650028070

Graph of the $Z$-function along the critical line