L(s) = 1 | + 2·5-s + 5·9-s − 4·11-s − 6·13-s + 6·17-s + 12·23-s − 7·25-s + 6·37-s + 10·45-s + 5·49-s − 8·55-s − 20·59-s − 12·65-s + 24·67-s + 16·81-s + 32·83-s + 12·85-s − 20·99-s − 8·103-s + 30·109-s − 12·113-s + 24·115-s − 30·117-s − 10·121-s − 26·125-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 5/3·9-s − 1.20·11-s − 1.66·13-s + 1.45·17-s + 2.50·23-s − 7/5·25-s + 0.986·37-s + 1.49·45-s + 5/7·49-s − 1.07·55-s − 2.60·59-s − 1.48·65-s + 2.93·67-s + 16/9·81-s + 3.51·83-s + 1.30·85-s − 2.01·99-s − 0.788·103-s + 2.87·109-s − 1.12·113-s + 2.23·115-s − 2.77·117-s − 0.909·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 173056, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.087569194 |
L(21) |
≈ |
2.087569194 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | 1+6T+pT2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 5 | C2 | (1−T+pT2)2 |
| 7 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−pT2)2 |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C22 | 1−5T2+p2T4 |
| 47 | C22 | 1−45T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1+10T+pT2)2 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C22 | 1−117T2+p2T4 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)2 |
| 89 | C22 | 1−162T2+p2T4 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37168840793787288233172923128, −10.83228872062438302440557434694, −10.32442858055002501858250137540, −10.14138038224859624964234125400, −9.605097811540624682727093877165, −9.430494786937664535759407668439, −8.955636128101187260718184376317, −7.76497461112482200405099189371, −7.74632184836783213897782844514, −7.53689314953457584073246640950, −6.68219372843844639588494615195, −6.41491769231875701474624915748, −5.42281091134998164623675271986, −5.23526122000263984690340009282, −4.81797216331020672173860035645, −4.08821981060230659903242129669, −3.28019333367342851958767060337, −2.57871025879883010529356440435, −1.98700077270846129269061733720, −1.00743657042411183446450197924,
1.00743657042411183446450197924, 1.98700077270846129269061733720, 2.57871025879883010529356440435, 3.28019333367342851958767060337, 4.08821981060230659903242129669, 4.81797216331020672173860035645, 5.23526122000263984690340009282, 5.42281091134998164623675271986, 6.41491769231875701474624915748, 6.68219372843844639588494615195, 7.53689314953457584073246640950, 7.74632184836783213897782844514, 7.76497461112482200405099189371, 8.955636128101187260718184376317, 9.430494786937664535759407668439, 9.605097811540624682727093877165, 10.14138038224859624964234125400, 10.32442858055002501858250137540, 10.83228872062438302440557434694, 11.37168840793787288233172923128