L(s) = 1 | − 3-s − 3·5-s − 3·7-s − 9-s − 4·11-s − 2·13-s + 3·15-s + 3·17-s − 12·19-s + 3·21-s + 25-s − 6·31-s + 4·33-s + 9·35-s − 7·37-s + 2·39-s + 6·41-s − 3·43-s + 3·45-s + 9·47-s − 3·49-s − 3·51-s − 18·53-s + 12·55-s + 12·57-s + 12·59-s + 2·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.34·5-s − 1.13·7-s − 1/3·9-s − 1.20·11-s − 0.554·13-s + 0.774·15-s + 0.727·17-s − 2.75·19-s + 0.654·21-s + 1/5·25-s − 1.07·31-s + 0.696·33-s + 1.52·35-s − 1.15·37-s + 0.320·39-s + 0.937·41-s − 0.457·43-s + 0.447·45-s + 1.31·47-s − 3/7·49-s − 0.420·51-s − 2.47·53-s + 1.61·55-s + 1.58·57-s + 1.56·59-s + 0.256·61-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 173056, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C1 | (1+T)2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | D4 | 1+3T+12T2+3pT3+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 17 | D4 | 1−3T+32T2−3pT3+p2T4 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | D4 | 1+6T+54T2+6pT3+p2T4 |
| 37 | D4 | 1+7T+48T2+7pT3+p2T4 |
| 41 | D4 | 1−6T+74T2−6pT3+p2T4 |
| 43 | D4 | 1+3T−18T2+3pT3+p2T4 |
| 47 | D4 | 1−9T+76T2−9pT3+p2T4 |
| 53 | D4 | 1+18T+170T2+18pT3+p2T4 |
| 59 | C2 | (1−6T+pT2)2 |
| 61 | D4 | 1−2T−30T2−2pT3+p2T4 |
| 67 | C2 | (1+6T+pT2)2 |
| 71 | D4 | 1+9T+124T2+9pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+12T+pT2)2 |
| 83 | D4 | 1−10T+38T2−10pT3+p2T4 |
| 89 | C22 | 1+110T2+p2T4 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92935982090090269524877935962, −10.67565088589767443246463949915, −10.14961185105258290925313438877, −9.817551941800209256085620937533, −9.079843229105532359254548938110, −8.686642160719022342144432527557, −8.113845820974984917274798486075, −7.80661199171213693905190107623, −7.25185454608095247488917996700, −6.80989501401375884306401767831, −6.16947279325834065838914490210, −5.81669187073265291085738243765, −5.19032220429870854510795163877, −4.55268808714137228837513162197, −4.00928377650971953596887185380, −3.45306201677728978971783322968, −2.80712463094253039902674874006, −2.02601789412831845206354750598, 0, 0,
2.02601789412831845206354750598, 2.80712463094253039902674874006, 3.45306201677728978971783322968, 4.00928377650971953596887185380, 4.55268808714137228837513162197, 5.19032220429870854510795163877, 5.81669187073265291085738243765, 6.16947279325834065838914490210, 6.80989501401375884306401767831, 7.25185454608095247488917996700, 7.80661199171213693905190107623, 8.113845820974984917274798486075, 8.686642160719022342144432527557, 9.079843229105532359254548938110, 9.817551941800209256085620937533, 10.14961185105258290925313438877, 10.67565088589767443246463949915, 10.92935982090090269524877935962