L(s) = 1 | − 2·5-s + 5·9-s + 4·11-s + 6·13-s + 6·17-s + 12·23-s − 7·25-s − 6·37-s − 10·45-s + 5·49-s − 8·55-s + 20·59-s − 12·65-s − 24·67-s + 16·81-s − 32·83-s − 12·85-s + 20·99-s − 8·103-s − 30·109-s − 12·113-s − 24·115-s + 30·117-s − 10·121-s + 26·125-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 5/3·9-s + 1.20·11-s + 1.66·13-s + 1.45·17-s + 2.50·23-s − 7/5·25-s − 0.986·37-s − 1.49·45-s + 5/7·49-s − 1.07·55-s + 2.60·59-s − 1.48·65-s − 2.93·67-s + 16/9·81-s − 3.51·83-s − 1.30·85-s + 2.01·99-s − 0.788·103-s − 2.87·109-s − 1.12·113-s − 2.23·115-s + 2.77·117-s − 0.909·121-s + 2.32·125-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 173056, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.087569194 |
L(21) |
≈ |
2.087569194 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | 1−6T+pT2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 5 | C2 | (1+T+pT2)2 |
| 7 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−pT2)2 |
| 37 | C2 | (1+3T+pT2)2 |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C22 | 1−5T2+p2T4 |
| 47 | C22 | 1−45T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−10T+pT2)2 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C22 | 1−117T2+p2T4 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+16T+pT2)2 |
| 89 | C22 | 1−162T2+p2T4 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51934658035853730324972508152, −11.02002109623427657805421566937, −10.45332787133852351827811142108, −10.25192866628245335004599790864, −9.499410376287534354260725032362, −9.279794348719621932061108838309, −8.618797312506838930781956045142, −8.342221936283905436847609548821, −7.55506918318717107045340125087, −7.34864537020561679716376479234, −6.80857743730259293062239842643, −6.45057159331266784874117649187, −5.60103366058374838686862810103, −5.28237839942400213115685528030, −4.22324818397657834157527136281, −4.06480225066723033621650033340, −3.61102415332154168227078522061, −2.92416774946599500699904970660, −1.35309831046559301069422652713, −1.29470269968441608072715738381,
1.29470269968441608072715738381, 1.35309831046559301069422652713, 2.92416774946599500699904970660, 3.61102415332154168227078522061, 4.06480225066723033621650033340, 4.22324818397657834157527136281, 5.28237839942400213115685528030, 5.60103366058374838686862810103, 6.45057159331266784874117649187, 6.80857743730259293062239842643, 7.34864537020561679716376479234, 7.55506918318717107045340125087, 8.342221936283905436847609548821, 8.618797312506838930781956045142, 9.279794348719621932061108838309, 9.499410376287534354260725032362, 10.25192866628245335004599790864, 10.45332787133852351827811142108, 11.02002109623427657805421566937, 11.51934658035853730324972508152