L(s) = 1 | + 6·5-s − 9-s − 2·13-s − 6·17-s + 17·25-s + 20·29-s + 6·37-s − 6·45-s − 9·49-s + 8·53-s − 12·65-s + 28·73-s − 8·81-s − 36·85-s − 20·89-s − 4·97-s − 24·101-s + 22·109-s − 28·113-s + 2·117-s − 2·121-s + 18·125-s + 127-s + 131-s + 137-s + 139-s + 120·145-s + ⋯ |
L(s) = 1 | + 2.68·5-s − 1/3·9-s − 0.554·13-s − 1.45·17-s + 17/5·25-s + 3.71·29-s + 0.986·37-s − 0.894·45-s − 9/7·49-s + 1.09·53-s − 1.48·65-s + 3.27·73-s − 8/9·81-s − 3.90·85-s − 2.11·89-s − 0.406·97-s − 2.38·101-s + 2.10·109-s − 2.63·113-s + 0.184·117-s − 0.181·121-s + 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 9.96·145-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(173056s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
11.0342 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 173056, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.650069237 |
L(21) |
≈ |
2.650069237 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C1 | (1+T)2 |
good | 3 | C22 | 1+T2+p2T4 |
| 5 | C2 | (1−3T+pT2)2 |
| 7 | C22 | 1+9T2+p2T4 |
| 11 | C22 | 1+2T2+p2T4 |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C22 | 1+18T2+p2T4 |
| 23 | C22 | 1−34T2+p2T4 |
| 29 | C2 | (1−10T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C22 | 1+41T2+p2T4 |
| 47 | C22 | 1+89T2+p2T4 |
| 53 | C2 | (1−4T+pT2)2 |
| 59 | C22 | 1+98T2+p2T4 |
| 61 | C2 | (1+pT2)2 |
| 67 | C22 | 1−46T2+p2T4 |
| 71 | C22 | 1+97T2+p2T4 |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C22 | 1+78T2+p2T4 |
| 83 | C22 | 1−154T2+p2T4 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27110648180870015477247594486, −10.90615349797839564088435717397, −10.26361615459714924439044485613, −10.15917061080704108074497661375, −9.583026452911920925962200783250, −9.392098843380701832603579291700, −8.826516368022426000035757705537, −8.314822912965428696565169918059, −7.964788732557451643835501218434, −6.81927019276186980443433613696, −6.53859565101617360290440907337, −6.49409899418294038372661757501, −5.59339610543323639627859383173, −5.41266641732841925902519708962, −4.68488467222293078851897360358, −4.28579371422244664849394136141, −2.95529952262336145499629650859, −2.54111305152544911453321665086, −2.09393659444886036309468602636, −1.15759207088729262449011784997,
1.15759207088729262449011784997, 2.09393659444886036309468602636, 2.54111305152544911453321665086, 2.95529952262336145499629650859, 4.28579371422244664849394136141, 4.68488467222293078851897360358, 5.41266641732841925902519708962, 5.59339610543323639627859383173, 6.49409899418294038372661757501, 6.53859565101617360290440907337, 6.81927019276186980443433613696, 7.964788732557451643835501218434, 8.314822912965428696565169918059, 8.826516368022426000035757705537, 9.392098843380701832603579291700, 9.583026452911920925962200783250, 10.15917061080704108074497661375, 10.26361615459714924439044485613, 10.90615349797839564088435717397, 11.27110648180870015477247594486