L(s) = 1 | − 8·11-s − 4·13-s − 8·23-s − 2·25-s − 4·37-s + 8·47-s + 2·49-s − 4·61-s − 8·71-s + 12·73-s − 8·83-s + 12·97-s − 16·107-s + 12·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 32·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + ⋯ |
L(s) = 1 | − 2.41·11-s − 1.10·13-s − 1.66·23-s − 2/5·25-s − 0.657·37-s + 1.16·47-s + 2/7·49-s − 0.512·61-s − 0.949·71-s + 1.40·73-s − 0.878·83-s + 1.21·97-s − 1.54·107-s + 1.14·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(41472s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(41472s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
41472
= 29⋅34
|
Sign: |
−1
|
Analytic conductor: |
2.64429 |
Root analytic conductor: |
1.27519 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 41472, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1+2T2+p2T4 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 17 | C22 | 1−14T2+p2T4 |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 29 | C22 | 1+2T2+p2T4 |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 43 | C22 | 1−26T2+p2T4 |
| 47 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 53 | C22 | 1−78T2+p2T4 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1+54T2+p2T4 |
| 71 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 73 | C2×C2 | (1−14T+pT2)(1+2T+pT2) |
| 79 | C22 | 1−82T2+p2T4 |
| 83 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 89 | C22 | 1+82T2+p2T4 |
| 97 | C2×C2 | (1−14T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04239490327039020804834100895, −9.671137631678653310194703102301, −8.947220995210199516220363970479, −8.235856561928500880487725685498, −7.919149368288401056596003007042, −7.43954650029933091969931577343, −6.97479060152944198107820505538, −5.96645258709776056472230677282, −5.63174825127725680977095102702, −4.98232615845313737476367504219, −4.45409902508691909602462330470, −3.52353181965425220918934352536, −2.60736399031644305889760904369, −2.13395303201845493039367507448, 0,
2.13395303201845493039367507448, 2.60736399031644305889760904369, 3.52353181965425220918934352536, 4.45409902508691909602462330470, 4.98232615845313737476367504219, 5.63174825127725680977095102702, 5.96645258709776056472230677282, 6.97479060152944198107820505538, 7.43954650029933091969931577343, 7.919149368288401056596003007042, 8.235856561928500880487725685498, 8.947220995210199516220363970479, 9.671137631678653310194703102301, 10.04239490327039020804834100895