| L(s) = 1 | − 8·11-s − 4·13-s − 8·23-s − 2·25-s − 4·37-s + 8·47-s + 2·49-s − 4·61-s − 8·71-s + 12·73-s − 8·83-s + 12·97-s − 16·107-s + 12·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 32·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + ⋯ |
| L(s) = 1 | − 2.41·11-s − 1.10·13-s − 1.66·23-s − 2/5·25-s − 0.657·37-s + 1.16·47-s + 2/7·49-s − 0.512·61-s − 0.949·71-s + 1.40·73-s − 0.878·83-s + 1.21·97-s − 1.54·107-s + 1.14·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 41472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04239490327039020804834100895, −9.671137631678653310194703102301, −8.947220995210199516220363970479, −8.235856561928500880487725685498, −7.919149368288401056596003007042, −7.43954650029933091969931577343, −6.97479060152944198107820505538, −5.96645258709776056472230677282, −5.63174825127725680977095102702, −4.98232615845313737476367504219, −4.45409902508691909602462330470, −3.52353181965425220918934352536, −2.60736399031644305889760904369, −2.13395303201845493039367507448, 0,
2.13395303201845493039367507448, 2.60736399031644305889760904369, 3.52353181965425220918934352536, 4.45409902508691909602462330470, 4.98232615845313737476367504219, 5.63174825127725680977095102702, 5.96645258709776056472230677282, 6.97479060152944198107820505538, 7.43954650029933091969931577343, 7.919149368288401056596003007042, 8.235856561928500880487725685498, 8.947220995210199516220363970479, 9.671137631678653310194703102301, 10.04239490327039020804834100895