L(s) = 1 | − 2·3-s − 4·7-s + 2·9-s − 2·11-s + 2·13-s + 6·19-s + 8·21-s − 12·23-s − 6·27-s − 6·29-s + 16·31-s + 4·33-s − 6·37-s − 4·39-s − 10·43-s − 2·49-s − 10·53-s − 12·57-s − 6·59-s − 18·61-s − 8·63-s + 10·67-s + 24·69-s − 8·73-s + 8·77-s + 11·81-s − 2·83-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.51·7-s + 2/3·9-s − 0.603·11-s + 0.554·13-s + 1.37·19-s + 1.74·21-s − 2.50·23-s − 1.15·27-s − 1.11·29-s + 2.87·31-s + 0.696·33-s − 0.986·37-s − 0.640·39-s − 1.52·43-s − 2/7·49-s − 1.37·53-s − 1.58·57-s − 0.781·59-s − 2.30·61-s − 1.00·63-s + 1.22·67-s + 2.88·69-s − 0.936·73-s + 0.911·77-s + 11/9·81-s − 0.219·83-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−4T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 41 | C2 | (1−pT2)2 |
| 43 | C22 | 1+10T+50T2+10pT3+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C2 | (1−4T+pT2)(1+14T+pT2) |
| 59 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 61 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 67 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 71 | C22 | 1−42T2+p2T4 |
| 73 | C2 | (1+4T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 89 | C22 | 1−162T2+p2T4 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.409849107021290924212913667598, −8.973240765902173635808131042840, −8.166221422442874923142527804299, −8.021975407540844688834874989070, −7.69637422811741651850934558385, −7.10033155884986463762739968618, −6.47840116003058930629506805179, −6.42877478120596479587860185234, −5.87631680476208146052773780967, −5.82865531445608805589229308253, −5.00401420807203998386668496800, −4.86788396244498416072826967746, −4.09648511318576568001315043004, −3.66254060472490055928832640638, −3.18816530161154160413273479350, −2.77741016294620158090345512097, −1.87310610378703042054930399652, −1.28971217048944487230143332373, 0, 0,
1.28971217048944487230143332373, 1.87310610378703042054930399652, 2.77741016294620158090345512097, 3.18816530161154160413273479350, 3.66254060472490055928832640638, 4.09648511318576568001315043004, 4.86788396244498416072826967746, 5.00401420807203998386668496800, 5.82865531445608805589229308253, 5.87631680476208146052773780967, 6.42877478120596479587860185234, 6.47840116003058930629506805179, 7.10033155884986463762739968618, 7.69637422811741651850934558385, 8.021975407540844688834874989070, 8.166221422442874923142527804299, 8.973240765902173635808131042840, 9.409849107021290924212913667598