L(s) = 1 | − 9-s + 8·13-s + 14·17-s + 4·37-s + 10·41-s + 6·49-s + 12·53-s − 20·61-s + 18·73-s − 8·81-s − 10·89-s − 4·97-s + 4·101-s − 12·109-s + 2·113-s − 8·117-s − 17·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 14·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1/3·9-s + 2.21·13-s + 3.39·17-s + 0.657·37-s + 1.56·41-s + 6/7·49-s + 1.64·53-s − 2.56·61-s + 2.10·73-s − 8/9·81-s − 1.05·89-s − 0.406·97-s + 0.398·101-s − 1.14·109-s + 0.188·113-s − 0.739·117-s − 1.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.13·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.449777640 |
L(21) |
≈ |
3.449777640 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+T2+p2T4 |
| 7 | C22 | 1−6T2+p2T4 |
| 11 | C22 | 1+17T2+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1−7T+pT2)2 |
| 19 | C22 | 1−7T2+p2T4 |
| 23 | C22 | 1+26T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C22 | 1+42T2+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−5T+pT2)2 |
| 43 | C2 | (1+pT2)2 |
| 47 | C22 | 1+14T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1+38T2+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1+129T2+p2T4 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | C2 | (1−9T+pT2)2 |
| 79 | C22 | 1+138T2+p2T4 |
| 83 | C22 | 1+41T2+p2T4 |
| 89 | C2 | (1+5T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.474626111714987005105452428289, −9.367359995447237594093830192117, −8.752116593395323242801923147869, −8.351852504600398419862760046948, −7.996825105458390711585015727874, −7.77361375731057492250159914064, −7.29576770062729789200049563035, −6.81597589739661095394337101429, −6.13240985028103065463642227541, −5.97216720530962660687726711371, −5.47532704787015703891955995501, −5.44232202253705255954242354875, −4.52793571040102260089164909665, −3.95258882913647270386748568644, −3.73742767373973948123899984573, −3.04418283685822809452542412477, −2.92892832482561331793376992509, −1.90743131121157376759686576618, −1.07252425096184911019067718479, −0.971631826011971749588523265304,
0.971631826011971749588523265304, 1.07252425096184911019067718479, 1.90743131121157376759686576618, 2.92892832482561331793376992509, 3.04418283685822809452542412477, 3.73742767373973948123899984573, 3.95258882913647270386748568644, 4.52793571040102260089164909665, 5.44232202253705255954242354875, 5.47532704787015703891955995501, 5.97216720530962660687726711371, 6.13240985028103065463642227541, 6.81597589739661095394337101429, 7.29576770062729789200049563035, 7.77361375731057492250159914064, 7.996825105458390711585015727874, 8.351852504600398419862760046948, 8.752116593395323242801923147869, 9.367359995447237594093830192117, 9.474626111714987005105452428289