L(s) = 1 | + 5·9-s − 10·11-s + 10·19-s + 8·29-s + 20·31-s + 10·41-s + 10·49-s + 20·61-s − 20·79-s + 16·81-s + 18·89-s − 50·99-s − 4·101-s + 20·109-s + 53·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 50·171-s + 173-s + ⋯ |
L(s) = 1 | + 5/3·9-s − 3.01·11-s + 2.29·19-s + 1.48·29-s + 3.59·31-s + 1.56·41-s + 10/7·49-s + 2.56·61-s − 2.25·79-s + 16/9·81-s + 1.90·89-s − 5.02·99-s − 0.398·101-s + 1.91·109-s + 4.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 3.82·171-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.929433293 |
L(21) |
≈ |
2.929433293 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−5T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+5T+pT2)2 |
| 13 | C2 | (1−pT2)2 |
| 17 | C22 | 1−9T2+p2T4 |
| 19 | C2 | (1−5T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−4T+pT2)2 |
| 31 | C2 | (1−10T+pT2)2 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1−5T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−121T2+p2T4 |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C22 | 1−165T2+p2T4 |
| 89 | C2 | (1−9T+pT2)2 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.885719314496483631087440279456, −9.444920249324078363851924348847, −8.489964967267012127252391952130, −8.451591241654617797928958535046, −8.011790149183488762133875175113, −7.48827396405676716769625049755, −7.31292880784136462291527510761, −7.08781247594143050208155581985, −6.27821204934432876523972304711, −5.99446293720170483428410644915, −5.34149140931135853662442739545, −5.09053976100896970407975199078, −4.54194332334893634143718979972, −4.47884914177644198254298165904, −3.57852601168250932625819451055, −3.00848023143031987805206135530, −2.53837244369318263664053504632, −2.33720387336688582995098144612, −0.988459762065002097456050266730, −0.899040366512349458854508529172,
0.899040366512349458854508529172, 0.988459762065002097456050266730, 2.33720387336688582995098144612, 2.53837244369318263664053504632, 3.00848023143031987805206135530, 3.57852601168250932625819451055, 4.47884914177644198254298165904, 4.54194332334893634143718979972, 5.09053976100896970407975199078, 5.34149140931135853662442739545, 5.99446293720170483428410644915, 6.27821204934432876523972304711, 7.08781247594143050208155581985, 7.31292880784136462291527510761, 7.48827396405676716769625049755, 8.011790149183488762133875175113, 8.451591241654617797928958535046, 8.489964967267012127252391952130, 9.444920249324078363851924348847, 9.885719314496483631087440279456