L(s) = 1 | − 2·13-s − 6·17-s − 14·37-s − 16·41-s + 18·53-s − 24·61-s + 22·73-s − 9·81-s − 26·97-s − 4·101-s + 2·113-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 0.554·13-s − 1.45·17-s − 2.30·37-s − 2.49·41-s + 2.47·53-s − 3.07·61-s + 2.57·73-s − 81-s − 2.63·97-s − 0.398·101-s + 0.188·113-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9195427721 |
L(21) |
≈ |
0.9195427721 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+p2T4 |
| 7 | C22 | 1+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1+p2T4 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−pT2)2 |
| 37 | C2 | (1+2T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+8T+pT2)2 |
| 43 | C22 | 1+p2T4 |
| 47 | C22 | 1+p2T4 |
| 53 | C2 | (1−14T+pT2)(1−4T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+12T+pT2)2 |
| 67 | C22 | 1+p2T4 |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1−16T+pT2)(1−6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+p2T4 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1+8T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.767903981935925295708492327207, −9.158047673976675898491476918859, −8.687258232474921851433377090122, −8.505857169049932365334168389233, −8.226234801848473967582035547826, −7.39847823269285495455918527513, −7.25980775975196894870560459596, −6.77304054145758788074451628387, −6.55043374149371581466503007737, −5.95840057996330046255882319759, −5.44955610623167730756439373762, −4.95607936423897530364484505212, −4.81645057521060485154422430691, −4.04574733067508784466632777220, −3.76485928125883358608548295484, −3.10195229467936784608381047703, −2.62941979123255925439395993849, −1.92297272797417177597877392857, −1.58776063976500662580433775881, −0.35694884930754046654729483871,
0.35694884930754046654729483871, 1.58776063976500662580433775881, 1.92297272797417177597877392857, 2.62941979123255925439395993849, 3.10195229467936784608381047703, 3.76485928125883358608548295484, 4.04574733067508784466632777220, 4.81645057521060485154422430691, 4.95607936423897530364484505212, 5.44955610623167730756439373762, 5.95840057996330046255882319759, 6.55043374149371581466503007737, 6.77304054145758788074451628387, 7.25980775975196894870560459596, 7.39847823269285495455918527513, 8.226234801848473967582035547826, 8.505857169049932365334168389233, 8.687258232474921851433377090122, 9.158047673976675898491476918859, 9.767903981935925295708492327207