L(s) = 1 | + 6·9-s + 8·11-s − 8·19-s − 4·29-s + 16·31-s − 12·41-s − 2·49-s + 8·59-s + 4·61-s + 27·81-s + 12·89-s + 48·99-s − 12·101-s + 28·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 48·171-s + 173-s + ⋯ |
L(s) = 1 | + 2·9-s + 2.41·11-s − 1.83·19-s − 0.742·29-s + 2.87·31-s − 1.87·41-s − 2/7·49-s + 1.04·59-s + 0.512·61-s + 3·81-s + 1.27·89-s + 4.82·99-s − 1.19·101-s + 2.68·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 3.67·171-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.525568626 |
L(21) |
≈ |
3.525568626 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C2 | (1−pT2)2 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C22 | 1−78T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+90T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C22 | 1+2T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.524562819225867659361458405960, −9.363805917093392064592456493400, −8.754636530346371975029320183850, −8.474820321447292991901261159846, −8.140500694834928447032980225688, −7.53915116080628948119860829468, −7.04271225572366521702658589920, −6.69296861528944708464781370553, −6.50688668432075950827878856500, −6.26692918769151761124674564637, −5.57325222919881844515671315446, −4.75868723536041397725577008107, −4.51510164471184856655057398001, −4.27042601855627920301222850342, −3.63474014915657021108151792694, −3.50313101214119214995756591303, −2.41853587344961721591346306465, −1.88216750789001048552953637940, −1.40211422804760138264466826050, −0.814050284895622139745909516269,
0.814050284895622139745909516269, 1.40211422804760138264466826050, 1.88216750789001048552953637940, 2.41853587344961721591346306465, 3.50313101214119214995756591303, 3.63474014915657021108151792694, 4.27042601855627920301222850342, 4.51510164471184856655057398001, 4.75868723536041397725577008107, 5.57325222919881844515671315446, 6.26692918769151761124674564637, 6.50688668432075950827878856500, 6.69296861528944708464781370553, 7.04271225572366521702658589920, 7.53915116080628948119860829468, 8.140500694834928447032980225688, 8.474820321447292991901261159846, 8.754636530346371975029320183850, 9.363805917093392064592456493400, 9.524562819225867659361458405960