L(s) = 1 | + 2·3-s − 2·7-s + 2·9-s − 2·13-s − 2·17-s + 8·19-s − 4·21-s + 10·23-s + 6·27-s − 10·37-s − 4·39-s + 12·41-s − 6·43-s + 14·47-s + 2·49-s − 4·51-s − 2·53-s + 16·57-s + 8·59-s − 4·61-s − 4·63-s + 14·67-s + 20·69-s − 18·73-s + 16·79-s + 11·81-s + 10·83-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.755·7-s + 2/3·9-s − 0.554·13-s − 0.485·17-s + 1.83·19-s − 0.872·21-s + 2.08·23-s + 1.15·27-s − 1.64·37-s − 0.640·39-s + 1.87·41-s − 0.914·43-s + 2.04·47-s + 2/7·49-s − 0.560·51-s − 0.274·53-s + 2.11·57-s + 1.04·59-s − 0.512·61-s − 0.503·63-s + 1.71·67-s + 2.40·69-s − 2.10·73-s + 1.80·79-s + 11/9·81-s + 1.09·83-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.541791827 |
L(21) |
≈ |
3.541791827 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+6T+pT2) |
| 17 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 29 | C22 | 1+6T2+p2T4 |
| 31 | C22 | 1−58T2+p2T4 |
| 37 | C2 | (1−2T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 47 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 53 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1−6T+18T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.399138532315601929631861252584, −9.243072371392499420253651797293, −8.797798566465001675462334830021, −8.683378625186750792913895541591, −7.908526189653864853575777906300, −7.69670304685218610623931435606, −7.16307409618371448895878095344, −6.93727411485892768383615336976, −6.62869100103402877147323772212, −5.95393472857215121955830003603, −5.33786599831243196001657380320, −5.15604000074851863198251272913, −4.59793702833499293242457194665, −4.01837887188466131351765351014, −3.34403631815961901670637454084, −3.28253317423061125992855079629, −2.55911487843505104698930491476, −2.39312566231043210505475636148, −1.33689939001090117967721838301, −0.73496640570089924081057845686,
0.73496640570089924081057845686, 1.33689939001090117967721838301, 2.39312566231043210505475636148, 2.55911487843505104698930491476, 3.28253317423061125992855079629, 3.34403631815961901670637454084, 4.01837887188466131351765351014, 4.59793702833499293242457194665, 5.15604000074851863198251272913, 5.33786599831243196001657380320, 5.95393472857215121955830003603, 6.62869100103402877147323772212, 6.93727411485892768383615336976, 7.16307409618371448895878095344, 7.69670304685218610623931435606, 7.908526189653864853575777906300, 8.683378625186750792913895541591, 8.797798566465001675462334830021, 9.243072371392499420253651797293, 9.399138532315601929631861252584