L(s) = 1 | − 2·3-s + 6·7-s + 2·9-s − 12·21-s + 2·23-s − 6·27-s + 12·29-s − 18·43-s + 14·47-s + 18·49-s + 12·63-s − 6·67-s − 4·69-s + 11·81-s + 22·83-s − 24·87-s + 12·89-s + 36·101-s + 18·103-s + 26·107-s − 22·121-s + 127-s + 36·129-s + 131-s + 137-s + 139-s − 28·141-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 2.26·7-s + 2/3·9-s − 2.61·21-s + 0.417·23-s − 1.15·27-s + 2.22·29-s − 2.74·43-s + 2.04·47-s + 18/7·49-s + 1.51·63-s − 0.733·67-s − 0.481·69-s + 11/9·81-s + 2.41·83-s − 2.57·87-s + 1.27·89-s + 3.58·101-s + 1.77·103-s + 2.51·107-s − 2·121-s + 0.0887·127-s + 3.16·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.35·141-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.159837556 |
L(21) |
≈ |
2.159837556 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 7 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+pT2)2 |
| 41 | C22 | 1+62T2+p2T4 |
| 43 | C22 | 1+18T+162T2+18pT3+p2T4 |
| 47 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−22T+242T2−22pT3+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.808634071172554708725211779728, −8.981021072051790332711909896389, −8.715682100582172526057577956387, −8.553190499172138405910183511041, −7.86922279576880230218534033104, −7.62561266042530916678711360244, −7.35729692236798593523829620330, −6.72016697862793868423748699054, −6.17364264952357770932618056764, −6.10430167146131886553183041943, −5.29369115774265646522695955691, −5.06187783798438436590623467379, −4.69630400834468146692411967977, −4.55449588525619354671206126566, −3.72895650149875186242656031563, −3.27386988931851935633473820789, −2.31422058439203483863311661110, −1.96314886680260062258064664354, −1.24744484253273168861608210071, −0.69687543080154082339848196756,
0.69687543080154082339848196756, 1.24744484253273168861608210071, 1.96314886680260062258064664354, 2.31422058439203483863311661110, 3.27386988931851935633473820789, 3.72895650149875186242656031563, 4.55449588525619354671206126566, 4.69630400834468146692411967977, 5.06187783798438436590623467379, 5.29369115774265646522695955691, 6.10430167146131886553183041943, 6.17364264952357770932618056764, 6.72016697862793868423748699054, 7.35729692236798593523829620330, 7.62561266042530916678711360244, 7.86922279576880230218534033104, 8.553190499172138405910183511041, 8.715682100582172526057577956387, 8.981021072051790332711909896389, 9.808634071172554708725211779728