L(s) = 1 | − 6·7-s + 2·9-s + 2·11-s + 4·13-s − 2·17-s − 6·19-s − 2·23-s + 14·29-s + 12·37-s + 8·43-s + 14·47-s + 18·49-s + 6·59-s − 2·61-s − 12·63-s + 8·67-s + 6·73-s − 12·77-s + 16·79-s − 5·81-s + 12·89-s − 24·91-s + 22·97-s + 4·99-s − 10·101-s − 10·103-s − 10·109-s + ⋯ |
L(s) = 1 | − 2.26·7-s + 2/3·9-s + 0.603·11-s + 1.10·13-s − 0.485·17-s − 1.37·19-s − 0.417·23-s + 2.59·29-s + 1.97·37-s + 1.21·43-s + 2.04·47-s + 18/7·49-s + 0.781·59-s − 0.256·61-s − 1.51·63-s + 0.977·67-s + 0.702·73-s − 1.36·77-s + 1.80·79-s − 5/9·81-s + 1.27·89-s − 2.51·91-s + 2.23·97-s + 0.402·99-s − 0.995·101-s − 0.985·103-s − 0.957·109-s + ⋯ |
Λ(s)=(=(2560000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2560000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2560000
= 212⋅54
|
Sign: |
1
|
Analytic conductor: |
163.227 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2560000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.945521021 |
L(21) |
≈ |
1.945521021 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 11 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 19 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 23 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 29 | C2 | (1−10T+pT2)(1−4T+pT2) |
| 31 | C22 | 1−58T2+p2T4 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C22 | 1−66T2+p2T4 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 53 | C22 | 1−42T2+p2T4 |
| 59 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 61 | C2 | (1−10T+pT2)(1+12T+pT2) |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−162T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C22 | 1−22T+242T2−22pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.559984904623230768120056510743, −9.202777442018719474560797104627, −8.882847590088192414502997957351, −8.626973638120059890081391121437, −7.86882957691107954305422945914, −7.79877819103494708854545042448, −6.81502325209710488933902103630, −6.80769583172628534747188827900, −6.29016806193117293938364217018, −6.26327312788276781106289806141, −5.78312796995093100510417287078, −5.04329672371956769339323219259, −4.35000627073342753358568227050, −4.05001816239171832702076295634, −3.82840733122396495336882871672, −3.16192918225020170956696752608, −2.53961247208360371430219396653, −2.31408596923977728867184232745, −1.10895467926714307885772631133, −0.64075104863877162412199913489,
0.64075104863877162412199913489, 1.10895467926714307885772631133, 2.31408596923977728867184232745, 2.53961247208360371430219396653, 3.16192918225020170956696752608, 3.82840733122396495336882871672, 4.05001816239171832702076295634, 4.35000627073342753358568227050, 5.04329672371956769339323219259, 5.78312796995093100510417287078, 6.26327312788276781106289806141, 6.29016806193117293938364217018, 6.80769583172628534747188827900, 6.81502325209710488933902103630, 7.79877819103494708854545042448, 7.86882957691107954305422945914, 8.626973638120059890081391121437, 8.882847590088192414502997957351, 9.202777442018719474560797104627, 9.559984904623230768120056510743