Properties

Label 4-405e2-1.1-c3e2-0-10
Degree $4$
Conductor $164025$
Sign $1$
Analytic cond. $571.007$
Root an. cond. $4.88833$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 8·4-s + 5·5-s + 6·7-s + 23·8-s + 5·10-s − 47·11-s + 5·13-s + 6·14-s + 23·16-s + 262·17-s − 112·19-s + 40·20-s − 47·22-s + 3·23-s + 5·26-s + 48·28-s − 157·29-s − 225·31-s + 184·32-s + 262·34-s + 30·35-s − 140·37-s − 112·38-s + 115·40-s + 140·41-s − 397·43-s + ⋯
L(s)  = 1  + 0.353·2-s + 4-s + 0.447·5-s + 0.323·7-s + 1.01·8-s + 0.158·10-s − 1.28·11-s + 0.106·13-s + 0.114·14-s + 0.359·16-s + 3.73·17-s − 1.35·19-s + 0.447·20-s − 0.455·22-s + 0.0271·23-s + 0.0377·26-s + 0.323·28-s − 1.00·29-s − 1.30·31-s + 1.01·32-s + 1.32·34-s + 0.144·35-s − 0.622·37-s − 0.478·38-s + 0.454·40-s + 0.533·41-s − 1.40·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(164025\)    =    \(3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(571.007\)
Root analytic conductor: \(4.88833\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 164025,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.162716458\)
\(L(\frac12)\) \(\approx\) \(5.162716458\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 - p T + p^{2} T^{2} \)
good2$C_2^2$ \( 1 - T - 7 T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 6 T - 307 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 47 T + 878 T^{2} + 47 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 5 T - 2172 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 131 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 56 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 3 T - 12158 T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 157 T + 260 T^{2} + 157 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 + 225 T + 20834 T^{2} + 225 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 70 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 140 T - 49321 T^{2} - 140 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 397 T + 78102 T^{2} + 397 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 347 T + 16586 T^{2} + 347 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 748 T + 354125 T^{2} - 748 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 338 T - 112737 T^{2} - 338 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 492 T - 58699 T^{2} + 492 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 32 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 970 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 1257 T + 1087010 T^{2} - 1257 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 102 T - 561383 T^{2} + 102 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1488 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 974 T + 36003 T^{2} + 974 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00305315537488317143596368968, −10.54037367682569579920004366535, −10.31714912434841002131519526681, −9.911162063304479401087819879755, −9.396002806365963110901379082504, −8.688742893077145323964999997375, −7.87806314303922216421800441235, −7.86450514138027266808410492180, −7.54490658990155895428086736956, −6.70950385483033090187267650416, −6.41626014943428114089570507024, −5.52266292023024773035295058494, −5.32367268989330517480770547782, −5.09433930657291656303107411384, −3.90932428186205648874900384635, −3.56071335122131363046138089821, −2.83484721001250786344729583483, −2.07122568382398696308808077558, −1.67010086897332496822657107370, −0.70532577044397818411966240529, 0.70532577044397818411966240529, 1.67010086897332496822657107370, 2.07122568382398696308808077558, 2.83484721001250786344729583483, 3.56071335122131363046138089821, 3.90932428186205648874900384635, 5.09433930657291656303107411384, 5.32367268989330517480770547782, 5.52266292023024773035295058494, 6.41626014943428114089570507024, 6.70950385483033090187267650416, 7.54490658990155895428086736956, 7.86450514138027266808410492180, 7.87806314303922216421800441235, 8.688742893077145323964999997375, 9.396002806365963110901379082504, 9.911162063304479401087819879755, 10.31714912434841002131519526681, 10.54037367682569579920004366535, 11.00305315537488317143596368968

Graph of the $Z$-function along the critical line