L(s) = 1 | − 4-s − 2·7-s + 10·13-s − 3·16-s − 2·19-s + 2·25-s + 2·28-s + 10·31-s − 2·37-s − 2·43-s − 11·49-s − 10·52-s + 4·61-s + 7·64-s + 16·67-s + 4·73-s + 2·76-s − 2·79-s − 20·91-s + 34·97-s − 2·100-s + 16·103-s + 34·109-s + 6·112-s − 10·121-s − 10·124-s + 127-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.755·7-s + 2.77·13-s − 3/4·16-s − 0.458·19-s + 2/5·25-s + 0.377·28-s + 1.79·31-s − 0.328·37-s − 0.304·43-s − 1.57·49-s − 1.38·52-s + 0.512·61-s + 7/8·64-s + 1.95·67-s + 0.468·73-s + 0.229·76-s − 0.225·79-s − 2.09·91-s + 3.45·97-s − 1/5·100-s + 1.57·103-s + 3.25·109-s + 0.566·112-s − 0.909·121-s − 0.898·124-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(59049s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(59049s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
59049
= 310
|
Sign: |
1
|
Analytic conductor: |
3.76501 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 59049, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.213964138 |
L(21) |
≈ |
1.213964138 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
good | 2 | C22 | 1+T2+p2T4 |
| 5 | C22 | 1−2T2+p2T4 |
| 7 | C2 | (1+T+pT2)2 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C2 | (1−5T+pT2)2 |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1−2T2+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | C2 | (1−5T+pT2)2 |
| 37 | C2 | (1+T+pT2)2 |
| 41 | C22 | 1+70T2+p2T4 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1+82T2+p2T4 |
| 53 | C22 | 1−2T2+p2T4 |
| 59 | C22 | 1+106T2+p2T4 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C22 | 1+34T2+p2T4 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1+T+pT2)2 |
| 83 | C22 | 1+118T2+p2T4 |
| 89 | C22 | 1+70T2+p2T4 |
| 97 | C2 | (1−17T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60055799547426009652810274468, −11.68613044632300397194764208501, −11.27363637433942366154952747032, −11.14495484165665719309580933705, −10.21723916378989491163277649923, −10.13654896803195556492580659962, −9.388168687038182801682601425010, −8.833245131673608769163171550514, −8.519652151235185896572998162213, −8.223590322904053967862384369796, −7.37225555795780709109469246797, −6.51667717431085117725053286253, −6.38988047348155697162740997975, −5.94367436151325889775645239570, −4.95763268889965373286462212722, −4.50551446413152782472606775083, −3.52168957571220695631214088920, −3.47172281941875945571553746616, −2.21095194874431803639976263612, −0.970090806857385628640518965887,
0.970090806857385628640518965887, 2.21095194874431803639976263612, 3.47172281941875945571553746616, 3.52168957571220695631214088920, 4.50551446413152782472606775083, 4.95763268889965373286462212722, 5.94367436151325889775645239570, 6.38988047348155697162740997975, 6.51667717431085117725053286253, 7.37225555795780709109469246797, 8.223590322904053967862384369796, 8.519652151235185896572998162213, 8.833245131673608769163171550514, 9.388168687038182801682601425010, 10.13654896803195556492580659962, 10.21723916378989491163277649923, 11.14495484165665719309580933705, 11.27363637433942366154952747032, 11.68613044632300397194764208501, 12.60055799547426009652810274468