L(s) = 1 | + 12·5-s − 24·7-s − 22·11-s − 8·13-s − 28·17-s − 68·19-s − 268·23-s − 18·25-s − 260·29-s + 112·31-s − 288·35-s + 316·37-s − 124·41-s − 148·43-s − 572·47-s − 130·49-s − 76·53-s − 264·55-s − 864·59-s − 136·61-s − 96·65-s − 512·67-s − 724·71-s + 972·73-s + 528·77-s − 528·79-s − 2.11e3·83-s + ⋯ |
L(s) = 1 | + 1.07·5-s − 1.29·7-s − 0.603·11-s − 0.170·13-s − 0.399·17-s − 0.821·19-s − 2.42·23-s − 0.143·25-s − 1.66·29-s + 0.648·31-s − 1.39·35-s + 1.40·37-s − 0.472·41-s − 0.524·43-s − 1.77·47-s − 0.379·49-s − 0.196·53-s − 0.647·55-s − 1.90·59-s − 0.285·61-s − 0.183·65-s − 0.933·67-s − 1.21·71-s + 1.55·73-s + 0.781·77-s − 0.751·79-s − 2.79·83-s + ⋯ |
Λ(s)=(=(156816s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(156816s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
156816
= 24⋅34⋅112
|
Sign: |
1
|
Analytic conductor: |
545.911 |
Root analytic conductor: |
4.83371 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 156816, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 11 | C1 | (1+pT)2 |
good | 5 | D4 | 1−12T+162T2−12p3T3+p6T4 |
| 7 | D4 | 1+24T+706T2+24p3T3+p6T4 |
| 13 | D4 | 1+8T+1310T2+8p3T3+p6T4 |
| 17 | D4 | 1+28T+5558T2+28p3T3+p6T4 |
| 19 | D4 | 1+68T+14378T2+68p3T3+p6T4 |
| 23 | D4 | 1+268T+36214T2+268p3T3+p6T4 |
| 29 | D4 | 1+260T+63694T2+260p3T3+p6T4 |
| 31 | D4 | 1−112T+38414T2−112p3T3+p6T4 |
| 37 | D4 | 1−316T+66254T2−316p3T3+p6T4 |
| 41 | D4 | 1+124T+133750T2+124p3T3+p6T4 |
| 43 | C2 | (1+74T+p3T2)2 |
| 47 | D4 | 1+572T+274438T2+572p3T3+p6T4 |
| 53 | D4 | 1+76T+48098T2+76p3T3+p6T4 |
| 59 | D4 | 1+864T+592918T2+864p3T3+p6T4 |
| 61 | D4 | 1+136T+136062T2+136p3T3+p6T4 |
| 67 | D4 | 1+512T+468662T2+512p3T3+p6T4 |
| 71 | D4 | 1+724T+694966T2+724p3T3+p6T4 |
| 73 | D4 | 1−972T+996374T2−972p3T3+p6T4 |
| 79 | D4 | 1+528T+1052674T2+528p3T3+p6T4 |
| 83 | D4 | 1+2112T+2198694T2+2112p3T3+p6T4 |
| 89 | D4 | 1+288T−124782T2+288p3T3+p6T4 |
| 97 | D4 | 1−500T+1245030T2−500p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40529560901769179360940352977, −10.05783308804332371999961816570, −9.691943699057387933092912451342, −9.602780152248101710406336583547, −8.904757943762688612686988469143, −8.305205710953796645705507284429, −7.87811740800547413327798666806, −7.41064726322153901475281195952, −6.50910591695764302787481839212, −6.42913890955334638661628131567, −5.76781803290502380869367139818, −5.66994616577643587810566789130, −4.56896407020150818853070963648, −4.28351314502518495303545676599, −3.36512440568639058159585179703, −2.91448017618907003083281129995, −2.01237317689166792041705731153, −1.74515037331068871195572042549, 0, 0,
1.74515037331068871195572042549, 2.01237317689166792041705731153, 2.91448017618907003083281129995, 3.36512440568639058159585179703, 4.28351314502518495303545676599, 4.56896407020150818853070963648, 5.66994616577643587810566789130, 5.76781803290502380869367139818, 6.42913890955334638661628131567, 6.50910591695764302787481839212, 7.41064726322153901475281195952, 7.87811740800547413327798666806, 8.305205710953796645705507284429, 8.904757943762688612686988469143, 9.602780152248101710406336583547, 9.691943699057387933092912451342, 10.05783308804332371999961816570, 10.40529560901769179360940352977