L(s) = 1 | + 2·5-s + 5·7-s + 2·11-s + 6·13-s + 3·17-s + 7·19-s + 6·23-s + 3·25-s − 13·29-s − 7·31-s + 10·35-s + 19·37-s + 8·41-s + 2·43-s − 2·47-s + 9·49-s − 7·53-s + 4·55-s + 6·59-s − 21·61-s + 12·65-s + 5·71-s − 6·73-s + 10·77-s + 2·79-s + 12·83-s + 6·85-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1.88·7-s + 0.603·11-s + 1.66·13-s + 0.727·17-s + 1.60·19-s + 1.25·23-s + 3/5·25-s − 2.41·29-s − 1.25·31-s + 1.69·35-s + 3.12·37-s + 1.24·41-s + 0.304·43-s − 0.291·47-s + 9/7·49-s − 0.961·53-s + 0.539·55-s + 0.781·59-s − 2.68·61-s + 1.48·65-s + 0.593·71-s − 0.702·73-s + 1.13·77-s + 0.225·79-s + 1.31·83-s + 0.650·85-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.256999614 |
L(21) |
≈ |
7.256999614 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 11 | C1 | (1−T)2 |
good | 7 | D4 | 1−5T+16T2−5pT3+p2T4 |
| 13 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 17 | D4 | 1−3T−2T2−3pT3+p2T4 |
| 19 | C4 | 1−7T+46T2−7pT3+p2T4 |
| 23 | D4 | 1−6T+38T2−6pT3+p2T4 |
| 29 | D4 | 1+13T+96T2+13pT3+p2T4 |
| 31 | D4 | 1+7T+70T2+7pT3+p2T4 |
| 37 | D4 | 1−19T+160T2−19pT3+p2T4 |
| 41 | D4 | 1−8T+30T2−8pT3+p2T4 |
| 43 | D4 | 1−2T+70T2−2pT3+p2T4 |
| 47 | D4 | 1+2T−58T2+2pT3+p2T4 |
| 53 | D4 | 1+7T+80T2+7pT3+p2T4 |
| 59 | D4 | 1−6T+110T2−6pT3+p2T4 |
| 61 | D4 | 1+21T+228T2+21pT3+p2T4 |
| 67 | C2 | (1+pT2)2 |
| 71 | D4 | 1−5T+110T2−5pT3+p2T4 |
| 73 | D4 | 1+6T+138T2+6pT3+p2T4 |
| 79 | D4 | 1−2T+6T2−2pT3+p2T4 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | D4 | 1+7T+152T2+7pT3+p2T4 |
| 97 | D4 | 1+18T+258T2+18pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.549764596071347884164245178450, −8.317083417966088551842787040030, −7.77518884452663127012928617492, −7.62552759773609875676005825338, −7.37225970981943262944471597515, −6.86602568759394421452680807508, −6.27777608560631956516505333040, −5.90141708557723876941097491007, −5.60932882720283261153447052646, −5.53876293198186659190058568918, −4.73962338589617553200782360279, −4.72311044467438401711539546030, −3.98934958251338811463628113308, −3.76093671397636364883489823639, −3.06504237899985161399957629674, −2.86281881307806943522262508550, −1.82931664528933569105866262624, −1.81394371783562424830942676410, −1.09133119145956640782465470314, −0.983009697956838234627739818625,
0.983009697956838234627739818625, 1.09133119145956640782465470314, 1.81394371783562424830942676410, 1.82931664528933569105866262624, 2.86281881307806943522262508550, 3.06504237899985161399957629674, 3.76093671397636364883489823639, 3.98934958251338811463628113308, 4.72311044467438401711539546030, 4.73962338589617553200782360279, 5.53876293198186659190058568918, 5.60932882720283261153447052646, 5.90141708557723876941097491007, 6.27777608560631956516505333040, 6.86602568759394421452680807508, 7.37225970981943262944471597515, 7.62552759773609875676005825338, 7.77518884452663127012928617492, 8.317083417966088551842787040030, 8.549764596071347884164245178450